909 resultados para Smoothed ANOVA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tema: Diseños con Factores Ortogonales

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the productivity growth of the SUMA tax offices located in Spain evolved between 2004 and 2006 by using Malmquist Index based on Data Envelopment Analysis (DEA) models. It goes a step forward by smoothed bootstrap procedure which improves the quality of the results by generalising the samples, so that the conclusions obtained from them can be applied in order to increase productivity levels. Additionally, the productivity effect is divided into two different components, efficiency and technological change, with the objective of helping to clarify the role played by either the managers or the level of technology in the final performance figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Análisis multivariante con técnicas de Permutaciones y MANOVA (Permanova)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción y conceptos de ANOVA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If data are analysed using ANOVA, and a significant F value obtained, a more detailed analysis of the differences between the treatment means will be required. The best option is to plan specific comparisons among the treatment means before the experiment is carried out and test them using ‘contrasts’. In some circumstances, post-hoc tests may be necessary and experimenters should think carefully which of the many tests available should be used. Different tests can lead to different conclusions and careful consideration as to the appropriate test should be given in each circumstance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the DF of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, it is important to consider the design of the experiment because this determines the appropriate ANOVA to use. Some of the most common experimental designs used in the biosciences and their relevant ANOVAs are discussed by. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Statnote 9, we described a one-way analysis of variance (ANOVA) ‘random effects’ model in which the objective was to estimate the degree of variation of a particular measurement and to compare different sources of variation in space and time. The illustrative scenario involved the role of computer keyboards in a University communal computer laboratory as a possible source of microbial contamination of the hands. The study estimated the aerobic colony count of ten selected keyboards with samples taken from two keys per keyboard determined at 9am and 5pm. This type of design is often referred to as a ‘nested’ or ‘hierarchical’ design and the ANOVA estimated the degree of variation: (1) between keyboards, (2) between keys within a keyboard, and (3) between sample times within a key. An alternative to this design is a 'fixed effects' model in which the objective is not to measure sources of variation per se but to estimate differences between specific groups or treatments, which are regarded as 'fixed' or discrete effects. This statnote describes two scenarios utilizing this type of analysis: (1) measuring the degree of bacterial contamination on 2p coins collected from three types of business property, viz., a butcher’s shop, a sandwich shop, and a newsagent and (2) the effectiveness of drugs in the treatment of a fungal eye infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loftus (Memory & Cognition 6:312-319, 1978) distinguished between interpretable and uninterpretable interactions. Uninterpretable interactions are ambiguous, because they may be due to two additive main effects (no interaction) and a nonlinear relationship between the (latent) outcome variable and its indicator. Interpretable interactions can only be due to the presence of a true interactive effect in the outcome variable, regardless of the relationship that it establishes with its indicator. In the present article, we first show that same problem can arise when an unmeasured mediator has a nonlinear effect on the measured outcome variable. Then we integrate Loftus's arguments with a seemingly contradictory approach to interactions suggested by Rosnow and Rosenthal (Psychological Bulletin 105:143-146, 1989). We show that entire data patterns, not just interaction effects alone, produce interpretable or noninterpretable interactions. Next, we show that the same problem of interpretability can apply to main effects. Lastly, we give concrete advice on what researchers can do to generate data patterns that provide unambiguous evidence for hypothesized interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principal topic: Effectuation theory suggests that entrepreneurs develop their new ventures in an iterative way by selecting possibilities through flexibility and interactions with the market; a focus on affordability of loss rather than maximal return on the capital invested, and the development of pre-commitments and alliances from stakeholders (Sarasvathy, 2001, 2008; Sarasvathy et al., 2005, 2006). In contrast, causation may be described as a rationalistic reasoning method to create a company. After a comprehensive market analysis to discover opportunities, the entrepreneur will select the alternative with the higher expected return and implement it through the use of a business plan. However, little is known about the consequences of following either of these two processes. One aspect that remains unclear is the relationship between newness and effectuation. On one hand it can be argued that the combination of a means-centered, interactive (through pre-commitments and alliances with stakeholders from the early phases of the venture creation) and open-minded process (through flexibility of exploiting contingencies) should encourage and facilitate the development of innovative solutions. On the other hand, having a close relationship with their “future first customers” and focussing too much on the resources and knowledge already within the firm may be a constraint that is not conducive to innovation, or at least not to a radical innovation. While it has been suggested that effectuation strategy is more likely to be used by innovative entrepreneurs (Sarasvathy, 2001), this hypothesis has not been demonstrated yet (Sarasvathy, 2001). Method: In our attempt to capture newness in its different aspects we have considered the following four domains where newness may happen: new product/service; new method for promotion and sales; new production methods/sourcing; market creation. We identified how effectuation may be differently associated with these four domains of newness. To test our four sets of hypotheses a dataset of 1329 firms (702 nascent and 627 young firms) randomly selected in Australia was examined through ANOVA Tukey HSD Test. Results and Implications: Results indicate the existence of a curvilinear relationship between effectuation and newness where low and high levels of newness are associated with low level of effectuation while medium level of newness is associated with high level of effectuation. Implications for academia, practitioners and policy makers are also discussed.