921 resultados para Small-angle Neutron
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
The structural evolution of high-density polyethylene subjected to uniaxial tensile deformation was investigated as a function of strain and after annealing at different temperatures using a scanning synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that in the course of tensile deformation intralamellar block slips were activated at small deformations followed by a stress-induced fragmentation and recrystallization process yielding thinner lamellae with their normal parallel to the stretching direction. The original sheared lamellae underwent severe internal deformation so that they were even less stable than the newly developed thinner lamellae. Accordingly, annealing results in a melting of the original crystallites even at moderate strains where the stress-induced fragmentation and recrystallization just sets in and generates a distinctly different form of lamellar stacks aligned along the drawing direction. It was found that the lamellae newly formed during stretching at moderate strains remain stable at lower temperature. Only at a very high annealing temperature of 120 degrees C can they be melted, leading to an isotropic distribution of the lamellar structure.
Resumo:
We have employed several techniques, including cyclic voltammetry, UV-Vis spectrometry, small-angle X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy, to characterize the formation processes and interfacial features of ultrathin multilayer films of silicotungstate and a cationic redox polymer on cysteamine-coated Au electrodes self-assembled monolayers. All of these techniques confirm that the multilayer films are built up stepwise as well as uniformly in a layer-by-layer fashion. In particular, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes. It has been proved that the electrochemical impedance spectroscopy is a very useful technique in characterization of multilayer films because it provides valuable information about the interfacial impedance features.
Resumo:
The structural parameters of the aggregated state in the polyamide PA1010 and N,N'-bismaleimide-4,4'-diphenyl methane (BMI) system were computed by means of the desmearing intensity from SAXS and using the concept of the distance distribution function. The results revealed that the parameters Q, I(0), l(c) and L decreased with the increase BMI component, whereas O-s increased. The particle dimension Z for different BMI contents was less than 13.2 nm, and the maximum value of the distance distribution function P(Z) was found to be in the range Z = 6.5-7.0 nm.
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
R Winter, D Le Messurier, CM Martin; Cryst Rev 12 (2006) 3 Sponsorship: EPSRC, CCLRC, Pilkington
Resumo:
This paper compares the structure of 1-alkyl-3-methylim ridazolium salts using SAXS and X-ray reflectivity. A range of anions have been investigated namely chloride, bromide, trifluoromethanesulfonate (OTf), bis(trifluoromethanesulfonyl)imide (TFI) and tetrachloropalladate(II) with cation alkyl chains ranging from n = 12-20. In general, the salts show liquid crystalline behaviour whose structure is still observed on melting into an isotropic liquid.
Resumo:
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 degrees C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 669-677, 2011
Resumo:
Electrospinning is a method used to produce nanoscale to microscale sized polymer fibres. In this study we electrospin 1:1 blends of deuterated and hydrogenated atactic-Polystyrene from N,N-Dimethylformamide for small angle neutron scattering experiments in order to analyse the chain conformation in the electrospun fibres. Small angle neutron scattering was carried out on randomly orientated fibre mats obtained using applied voltages of 10kV-15kV and needle tip to collector distances of 20cm and 30cm. Fibre diameters varied from 3mm - 20mm. Neutron scattering data from fibre samples were compared with bulk samples of the same polymer blend. The scattering data indicates that there are pores and nanovoiding present in the fibres; this was confirmed by scanning electron microscopy. A model that combines the scattering from the pores and the labelled polymer chains was used to extract values for the radius of gyration. The radius of gyration in the fibres is found to vary little with the applied voltage, but varies with the initial solution concentration and fibre diameter. The values for the radius of gyration in the fibres are broadly equivalent to that of the bulk state.