985 resultados para Slow-wave activity
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
The hypothesis tested was that rapid rejection of Trichinella spiralis infective larvae from immunized rats following a challenge infection is associated with a local anaphylactic reaction, and this response should be reflected in altered small intestinal motility. The objective was to determine if altered gut smooth muscle function accompanies worm rejection based on the assumption that anaphylaxis in vivo could be detected by changes in intestinal smooth muscle contractile activity (ie. an equivalent of the Schultz-Dale reaction or in vitro anaphylaxis). The aims were to (1) characterize motility changes by monitoring intestinal myoelectric activity in conscious rats during the enteric phase of T. spiralis infection in immunized hosts, (2) detect the onset and magnitude of myoelectric changes caused by challenge infection in immunized rats, (3) determine the parasite stimulus causing changes, and (4) determine the specificity of host response to stimulation. Electrical slow wave frequency, spiking activity, normal interdigestive migrating myoelectric complexes and abnormal migrating action potential complexes were measured. Changes in myoelectric parameters induced by larvae inoculated into the duodenum of immune hosts differed from those associated with primary infection with respect to time of onset, magnitude and duration. Myoelectric changes elicited by live larvae could not be reproduced by inoculation of hosts with dead larvae, larval excretory-secretory products, or by challenge with a heterologous parasite, Eimeria nieschulzi. These results indicate that (1) local anaphylaxis is a component of the initial response to T. spiralis in immune hosts, since the rapid onset of altered smooth muscle function parallels in time the expression of rapid rejection of infective larvae, and (2) an active mucosal penetration attempt by the worm is necessary to elicit this host response. These findings provide evidence that worm rejection is a consequence of, or sequel to, an immediate hypersensitivity reaction elicited when parasites attempt to invade the gut mucosa of immunized hosts. ^
Resumo:
The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.
Resumo:
In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.
Resumo:
Il est bien établi que le thalamus joue un rôle crucial dans la génération de l’oscillation lente synchrone dans le cortex pendant le sommeil lent. La puissance des ondes lente / delta (0.2-4 Hz) est un indicateur quantifiable de la qualité du sommeil. La contribution des différents noyaux thalamiques dans la génération de l’activité à ondes lentes et dans sa synchronisation n’est pas connue. Nous émettons l’hypothèse que les noyaux thalamiques de premier ordre (spécifiques) influencent localement l’activité à ondes lentes dans les zones corticales primaires, tandis que les noyaux thalamiques d’ordre supérieur (non spécifiques) synchronisent globalement les activités à ondes lentes à travers de larges régions corticales. Nous avons analysé les potentiels de champ locaux et les activités de décharges de différentes régions corticales et thalamiques de souris anesthésiées alors qu’un noyau thalamique était inactivé par du muscimol, un agoniste des récepteurs GABA. Les enregistrements extracellulaires multi-unitaires dans les noyaux thalamiques de premier ordre (VPM) et d’ordre supérieur (CL) montrent des activités de décharges considérablement diminuées et les décharges par bouffées de potentiels d’action sont fortement réduites après inactivation. Nous concluons que l’injection de muscimol réduit fortement les activités de décharges et ne potentialise pas la génération de bouffées de potentiel d’action à seuil bas. L’inactivation des noyaux thalamiques spécifiques avec du muscimol a diminué la puissance lente / delta dans la zone corticale primaire correspondante. L’inactivation d’un noyau non spécifique avec le muscimol a significativement réduit la puissance delta dans l’ensemble du cortex étudié. Nos expériences démontrent que le thalamus a un rôle crucial dans la génération de l’oscillation lente corticale.
Resumo:
Objective: To describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder. Methods: The authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach. Results: All six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX). Conclusions: XMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms.
Resumo:
Objectives: Previous studies using subjective assessments have reported associations between sleep quantity and quality and cardiometabolic disorders, but little is known regarding the associ-ations with objective sleep characteristics. The purpose of this study was to evaluate the association between objective sleep measure sand metabolic syndrome (MS), hypertension, diabetes and obesity. Methods: 2162 subjects (51.2% women, mean age 58,11.1) from the general population were evaluated for hypertension,diabetes, overweight/obesity and MS, and underwent a full polysom-nography (PSG). PSG measured variables included: Total sleep time(TST), percentage and time spent in slow wave sleep (SWS) and in rapid eye movement (REM) sleep, sleep efficiency and arousal index(ArI) Results: In univariate analyses, MS was associated with decreased TST, SWS, REM sleep, sleep efficiency and increased ArI. After adjustment for age, gender, smoking, alcohol, physical activity, drugsthat affect sleep and depression, the ArI remained significantly higher, but the difference disappeared in subjects without significant sleep disordered breathing (SDB). Differences in sleep structure were also found according to the presence or absence of hypertension, diabetes and overweight/obesity in univariate analysis. However, these differences were attenuated after multivariate adjustment and after excluding subjects with significant SDB. Conclusions: In this population-based sample we found significant associations between sleep structure and MS, hypertension, diabetes and obesity. However, these associations were cancelled after multivariate adjustment. We conclude that normal variations in sleep contribute little if any to MS and associated disorders.
Resumo:
Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.
Resumo:
STUDY OBJECTIVES: To evaluate the association between objective sleep measures and metabolic syndrome (MS), hypertension, diabetes, and obesity. DESIGN: Cross-sectional study. SETTING: General population sample. PARTICIPANTS: There were 2,162 patients (51.2% women, mean age 58.4 ± 11.1). INTERVENTIONS: Patients were evaluated for hypertension, diabetes, overweight/obesity, and MS, and underwent a full polysomnography (PSG). MEASUREMENTS AND RESULTS: PSG measured variables included: total sleep time (TST), percentage and time spent in slow wave sleep (SWS) and in rapid eye movement (REM) sleep, sleep efficiency and arousal index (ArI). In univariate analyses, MS was associated with decreased TST, SWS, REM sleep, and sleep efficiency, and increased ArI. After adjustment for age, sex, smoking, alcohol, physical activity, drugs that affect sleep and depression, the ArI remained significantly higher, but the difference disappeared in patients without significant sleep disordered breathing (SDB). Differences in sleep structure were also found according to the presence or absence of hypertension, diabetes, and overweight/obesity in univariate analysis. However, these differences were attenuated after multivariate adjustment and after excluding subjects with significant SDB. CONCLUSIONS: In this population-based sample we found significant associations between sleep structure and MS, hypertension, diabetes, and obesity. However, these associations were cancelled after multivariate adjustment. We conclude that normal variations in sleep contribute little if any to MS and associated disorders.
Resumo:
Cortistatin is a presumptive neuropeptide that shares 11 of its 14 amino acids with somatostatin. In contrast to somatostatin, administration of cortistatin into the rat brain ventricles specifically enhances slow wave sleep, apparently by antagonizing the effects of acetylcholine on cortical excitability. Here we show that preprocortistatin mRNA is expressed in a subset of GABAergic cells in the cortex and hippocampus that partially overlap with those containing somatostatin. A significant percentage of cortistatin-positive neurons is also positive for parvalbumin. In contrast, no colocalization was found between cortistatin and calretinin, cholecystokinin, or vasoactive intestinal peptide. During development there is a transient increase in cortistatin-expressing cells in the second postnatal week in all cortical areas and in the dentate gyrus. A transient expression of preprocortistatin mRNA in the hilar region at P16 is paralleled by electrophysiological changes in dentate granule cells. Together, these observations suggest mechanisms by which cortistatin may regulate cortical activity.
Resumo:
STUDY OBJECTIVES: Sodium oxybate (SO) is a GABA(B) agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. DESIGN: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABA(B) receptor agonist, to assess the role of GABA(B) receptors in the SO response. MEASUREMENTS AND RESULTS: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. CONCLUSIONS: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABA(B) receptors in REMS generation. CITATION: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071-1084.
Resumo:
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.
Resumo:
Deletions on the short arm of chromosome 4 cause Wolf-Hirschhorn syndrome (WHS) and Pitt-Rogers-Danks syndrome (PRDS). WHS is associated with severe growth and mental retardation, microcephaly, a characteristic facies and congenital malformations. The PRDS phenotype is similar to WHS but generally less severe. Seizures occur in the majority of WHS and PRDS patients. Sgrò et al. [17] described a stereotypic electroclinical pattern in four unrelated WHS patients, consisting of intermittent bursts of 2-3 Hz high voltage slow waves with spike wave activity in the parietal areas during drowsiness and sleep associated with myoclonic jerks. We report a patient with PRDS and the typical EEG pattern and review 14 WHS patients with similar EEG findings reported in the literature. CONCLUSION: Awareness and recognition of the characteristic electroclinical findings in Wolf-Hirschhorn syndrome and Pitt-Rogers-Danks syndrome might help in the early diagnosis of such patients.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
In the literature, persistent neural activity over frontal and parietal areas during the delay period of oculomotor delayed response (ODR) tasks has been interpreted as an active representation of task relevant information and response preparation. Following a recent ERP study (Tekok-Kilic, Tays, & Tkach, 2011 ) that reported task related slow wave differences over frontal and parietal sites during the delay periods of three ODR tasks, the present investigation explored developmental differences in young adults and adolescents during the same ODR tasks using 128-channel dense electrode array methodology and source localization. This exploratory study showed that neural functioning underlying visual-spatial WM differed between age groups in the Match condition. More specifically, this difference is localized anteriorly during the late delay period. Given the protracted maturation of the frontal lobes, the observed variation at the frontal site may indicate that adolescents and young adults may recruit frontal-parietal resources differently.