838 resultados para Slip casting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enhanced flow in carbon nanotubes is explained using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why `slip-lengths' may be greater than the tube radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster informs how syphilis can be spread through intimate contact including kissing or oral sex and how condoms can be used as a method of protection from sexually transmitted infections (STIs). It also provides contact details for the�Genito Urinary Medicine (GUM) clinics in Northern Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster informs how syphilis can be spread through oral sex and how condoms can be used as a method of protection from sexually transmitted infections (STIs). It also provides contact details for the�Genito Urinary Medicine (GUM) clinics in Northern Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster informs how syphilis can be spread through oral sex and how condoms can be used as a method of protection from sexually transmitted infections (STIs). It also provides updated attendance and contact details for the�Genito Urinary Medicine (GUM) clinics in Northern Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Serial casting is often prescribed after botulinum toxin injections to improve joint ranges of motion and to potentiate the decrease in hypertonia. The aim of this study was to compare delayed versus immediate serial casting as an adjunct to botulinum toxin therapy for partially reducible spastic equinus. METHODS: Twelve children who presented spastic equinus associated with mild gastrosoleus contracture took part. Five of them had a diagnosis of spastic diplegia, whereas 7 had a diagnosis of congenital hemiplegia. Children were randomized to immediate serial casting (same day) or delayed serial casting (4 weeks later) after botulinum toxin injection to their gastrosolei. Casts were replaced weekly for 3 weeks. RESULTS: Three children complained of pain that required recasting in the immediate casting group versus none in the delayed casting group (P = 0.08). At 3 months, there was a 27-degree improvement in the fast dorsiflexion angle (Tardieu R1) in the delayed casting group versus 17 degrees in the immediate casting group (P = 0.029). At 6 months, a 19-degree improvement persisted in the delayed group compared with 11 degrees in the immediate group (P = 0.010). CONCLUSIONS: There is a clear benefit in delaying serial casting after the injection of botulinum toxin in the recurrence of spasticity at the gastrosoleus that may also offer an advantage regarding the incidence of painful episodes associated with casting. Most importantly, reducing the recurrence of spasticity by delayed serial casting may offer the possibility of decreasing the frequency of botulinum toxin reinjections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ceramic shell is a material mainly used for making foundry molds. This research demonstrates that ceramic shell can be used for making sculptures with exceptional definition in its finish. The research has identified a number of advantages of the material to meet the challenges of an artist during the making of a sculpture. The research has been developed in six stages: In the first stage data were collected from the chaff as the process material. This was the starting point for research. In the second stage, we have set the appropriate composition of the slurry, both in percentage and type of binder, and firing curve. To this end, we evaluated the application characteristics, thickness, drying, mechanical strength, the reduction coefficient and porosity. In the third stage it was observed that the husk is suitable for all types of materials acting as support. It was also found that the slurry can be used with various sculptural processes: modeling, molding using silicone or plaster mold, shuttering, with internal metal frame, and so on. In addition, we have established methods to repair and modify the husk by hand and power tools. In the fourth stage we have found ways to modify the surface of the husk with other minerals that affect the structure: introduction of filing of copper, bronze and iron in the slurry ceramics, different staining procedure in hot or cold, by enamel slip, and so on. In the fifth stage sculptures were made using the methods established in the previous stages, to verify this hypothesis. The sixth stage, which is annexed, contains a new method to process the ceramic shell as a mold in casting that emerged from the proven methods in the investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pavement profile or smoothness has been identified nationally as a good measure of highway user satisfaction. This has led highway engineers to measure profiles of both operating and new highways. Operational highway profiles are often measured with high-speed inertial profilers. New highway profiles are usually measured with profilographs in order to establish incentives or disincentives for pavement construction. In most cases, these two processes do not measure the same value from the “cradle to grave” life of pavements. In an attempt to correct the inconsistency between measuring techniques, lightweight profilers intended to produce values to be used for construction acceptance are being made that measure the same profile as high-speed inertial profilers. Currently, two profiler systems have been identified that can measure pavement profile during construction. This research has produced a field evaluation of the two systems. The profilers evaluated in this study are able to detect roughness in the final profile, including localized roughness and roughness at joints. Dowel basket ripple is a significant source of pavement surface roughness. The profilers evaluated in this study are able to detect dowel basket ripple with enough clarity to warn the paving crew. String-line disturbances degrade smoothness. The profilers evaluated in this study are able to detect some string-line disturbances during paving operations. The profilers evaluated in this study are not currently able to produce the same absolute International Roughness Index (IRI) values on the plastic concrete that can be measured by inertial profilers on the hardened concrete. Construction application guidelines are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature deterioration of slip formed portland cement concrete (PCC) barriers is an ongoing problem in the Iowa Primary and Interstate highway system. The requirement to have a concrete mix which can be sufficiently pliable to be readily molded into the barrier shape and yet be sufficiently stiff to maintain a true shape and height immediately after molding is difficult to meet. A concrete mix which is stiff enough to maintain its shape immediately after molding is usually difficult to work with. It often contains open or hidden tears and large voids. One way to minimize the molding resistance is by additional vibration. If intensive vibration is applied, the entrapped air voids and tears in the concrete can usually be eliminated, however, in that process, the essential entrained air content can also be lost. In the evaluation of slip formed PCC barriers, it is common to find large voids, tears and a low entrained air content, all contributing to premature deterioration. A study was initiated to evaluate core samples taken from good and from bad appearing areas of various median barriers. Evaluations were done covering visual appearance, construction information, air content and chloride content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summarizes Iowa's 14 years of experience in pioneering and developing slip-form paving methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction an make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TPF-5[098] and concrete admixtures industry) and an in-depth mix proportioning and performance study and field applications (Phase II). The phase I study demonstrated that the new type of SCC needs to possess not only excellent self-consolidating ability before a pavement slab is extruded, but also sufficient “green” strength (the strength of the concrete in a plastic state) after the extrusion. To meet these performance criteria, the new type of SCC mixtures should not be as fluid as conventional SCC but just flowable enough to be self-consolidating. That is, this new type of SCC should be semi-flowable self-consolidating concrete (SFSCC). In the phase II study, effects of different materials and admixtures on rheology, especially the thixotropy, and green strength of fresh SFSCC have been further investigated. The results indicate that SFSCC can be designed to (1) be workable enough for machine placement, (2) be self-consolidating without segregation, (3) hold its shape after extrusion from a paver, and (4) have performance properties (strength and durability) comparable with current pavement concrete. Due to the combined flowability (for self-consolidation) and shape-holding ability (for slip-forming) requirements, SFSCC demands higher cementitious content than conventional pavement concrete. Generally, high cementitious content is associated with high drying shrinkage potential of the concrete. However, well-proportioned and well-constructed SFSCC in a bike path constructed at Ames, IA, has not shown any shrinkage cracks after approximately 3 years of field service. On the other hand, another SFSCC pavement with different mix proportions and construction conditions showed random cracking. The results from the field SFSCC performance monitoring implied that not only the mix proportioning method but also the construction practice is important for producing durable SFSCC pavements. A carbon footprint, energy consumption, and cost analysis conducted in this study have suggested that SFSCC is economically comparable to conventional pavement concrete in fixed-form paving construction, with the benefit of faster, quieter, and easier construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To constrain the age of strike-slip shear, related granitic magmatism, and cooling along the Insubric line, 29 size fractions of monazite and xenotime were dated by the U-Pb method, and a series of 25 Rb-Sr and Ar-40/Ar-39 ages were measured on different size fractions of muscovite and biotite. The three pegmatitic intrusions analyzed truncate high-grade metamorphic mylonite gneisses of the Simplon shear zone, a major Alpine structure produced in association with dextral strike-slip movements along the southern edge of the European plate, after collision with its Adriatic indenter. Pegmatites and aplites were produced between 29 and 25 Ma in direct relation to right-lateral shear along the Insubric line, by melting of continental crust having Sr-87/Sr-86 between 0.7199 and 0.7244 at the time of melting. High-temperature dextral strike-slip shear was active at 29.2 +/- 0.2 (2 sigma) Ma, and it terminated before 26.4 +/- 0.1 Ma. During dike injection, temperatures in the country rocks of the Isorno-Orselina and Monte Rosa structural units did not exceed approximate to 500 degrees C, leading to fast initial cooling, followed by slower cooling to approximate to 350 degrees C within several million years. In one case, initial cooling to approximate to 500 degrees C was significantly delayed by about 4 m.y., with final cooling to approximate to 300 degrees C at 20-19 Ma in all units. For the period between 29 and 19 Ma, cooling of the three sample localities was non-uniform in space and time, with significant variations on the kilometre scale. These differences are most likely due to strongly varying heat flow, and/or heterogeneous distribution of unroofing rates within the continuously deforming Insubric line. If entirely ascribed to differences in unroofing, corresponding rates would vary between 0.5 and 2.5 mm/y, for a thermal gradient of 30 degrees/km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The As Pontes basin (12 km2), NW Iberian Peninsula, is bounded by a double restraining bend of a dextral strike-slip fault, which is related to the western onshore end of the Pyrenean belt. Surface and subsurface data obtained from intensive coal exploration and mining in the basin since the 1960s together with additional structural and stratigraphic sequence analysis allowed us to determine the geometric relationships between tectonic structures and stratigraphic markers. The small size of the basin and the large amount of quality data make the As Pontes basin a unique natural laboratory for improving our understanding of the origin and evolution of restraining bends. The double restraining bend is the end stage of the structural evolution of a compressive underlapping stepover, where the basin was formed. During the first stage (stepover stage), which began ca. 30 Ma ago (latest Rupelian) and lasted 3.4 My, two small isolated basins bounded by thrusts and normal faults were formed. For 1.3 My, the strike-slip faults, which defined the stepover, grew towards each other until joining and forming the double restraining bend, which bounds one large As Pontes basin (transition stage). The history of the basin was controlled by the activity of the double restraining bend for a further 3.4 My (restraining bend stage) and ended in mid-Aquitanian times (ca. 22 Ma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over-consolidation is often visible as longitudinal vibrator trails in the surface of concrete pavements constructed using slip-form paving. Concrete research and practice have shown that concrete material selection and mix design can be tailored to provide a good compaction without the need for vibration. However, a challenge in developing self-consolidating concrete for slip-form paving (SF SCC) is that the new SF SCC needs to possess not only excellent self-compactibility and stability before extrusion, but also sufficient “green” strength after extrusion, while the concrete is still in a plastic state. The SF SCC to be developed will not be as fluid as the conventional SCC, but it will (1) be workable enough for machine placement, (2) be self-compacting with minimum segregation, (3) hold shape after extrusion from a paver, and (4) have performance properties (strength and durability) compatible to current pavement concrete. The overall objective of this project is to develop a new type of SCC for slip-form paving to produce more workable concrete and smoother pavements, better consolidation of the plastic concrete, and higher rates of production. Phase I demonstrated the feasibility of designing a new type of SF SCC that can not only self-consolidate, but also have sufficient green strength. In this phase, a good balance between flowability and shape stability was achieved by adopting and modifying the mix design of self-consolidating concrete to provide a high content of fine materials in the fresh concrete. It was shown that both the addition of fine particles and the modification of the type of plasticizer significantly improve fresh concrete flowability. The mixes used in this phase were also found to have very good shape stability in the fresh state. Phase II will focus on developing a SF SCC mix design in the lab and a performing a trial of the SF SCC in the field. Phase III will include field study, performance monitoring, and technology transfer.