899 resultados para Slag replacement
Resumo:
Copyright © 2013 John Wiley & Sons Ltd.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
Titanate nanotubes (TNT) with different sodium contents have been synthesised using a hydrothermal approach and a swift and highly controllable post-washing processes. The influence of the sodium/proton replacement on the structural and morphological characteristics of the prepared materials was analysed. Different optical behaviour was observed depending on the Na+/H+ samples’ content. A band gap energy of 3.27±0.03 eV was estimated for the material with higher sodium content while a value of 2.81±0.02 eV was inferred for the most protonated material, which therefore exhibits an absorption edge in the near visible region. The point of zero charge of the materials was determined and the influence of the sodium content on the adsorption of both cationic and anionic organic dyes was studied. The photocatalytic performance of the TNT samples was evaluated in the rhodamine 6G degradation process. Best photodegradation results were obtained when using the most protonated material as catalyst, although this material has shown the lowest R6G adsorption capability.
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.
Resumo:
Nucleic Acid Testing (NAT) as a tool for primary screening of blood donors became a reality in the end of the 1990 decade. We report here the development of an "in-house" RT-PCR method that allows the simultaneous (multiplex) detection of HCV and HIV-RNA in addition to an artificial RNA employed as an external control. This method detects all HIV group M subtypes, plus group N and O, with a detection threshold of 500 IU/mL. After validation, the method replaced p24 Ag testing, in use for blood donation screening since 1996 at our services. From July 2001 to February 2006, 102,469 donations were tested and 41 (0.04%) were found HIV-RNA reactive. One NAT-only reactive donation (antibody non-reactive) was observed, with subsequent seroconversion of the implied donor, giving a yield of 1:102,469. This rate is in contrast to the international experience that reports a detection of approximately 1:600,000 - 1:3,100,000 of isolated HIV-RNA donations.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
This paper approaches issues related to frame problems and nonresponse in surveys. These nonsampling errors affect the accuracy of the estimates whereas the estimators became biased and less precise. We analyse some estimation methods that deal with those problems and give an especial focus to post-stratification procedures.
Resumo:
A lesão renal aguda é uma complicação comum nas unidades de cuidados intensivos. A mortalidade do doente crítico que requer diálise é extremamente elevada, apesar dos avanços significativos dos cuidados prestados a estes doentes. Há várias décadas que se discute o tipo de modalidade dialítica a oferecer a estes doentes (continua ou intermitente) e os principais fatores que pesam na decisão clínica são os meios e a experiência do centro, bem como a condição clínica do doente. Vários estudos tentaram estabelecer a melhor abordagem ao doente crítico com lesão renal aguda e necessidade dialítica, em termos de sobrevida do doente e recuperação renal. Nesta revisão tentarei resumir as evidências disponíveis sobre este tema.
Resumo:
INTRODUCTION: In the postmenopausal period, an average of 25% of women will present symptomatic ovarian failure requiring hormonal replacement therapy. Estrogen can relieve vasomotor symptoms. Hormonal replacement therapy is generally not recommended for breast cancer patients due to the potential risk of tumor recurrence. To answer the questions about the safety of hormonal replacement therapy in this subgroup of women, it is necessary to establish the acceptance of treatment. METHODS: Between September 1998 and February 2001, a cohort of 216 breast cancer patients were asked to complete a questionnaire. All patients had completed their treatment and were informed about survival rates after breast cancer and hormonal replacement therapy. RESULTS: Among the 216 patients, 134 (62%) would refuse hormonal replacement therapy. A hundred patients were afraid of relapse (74.6%). Adjuvant tamoxifen therapy was the only statistically significant variable (70.3% versus 29.7% p=0.003). Understanding clinical stage (p= 0.045) and type of medical assistance (private versus public , p=0.033) also seemed to influence the decision. Early stage disease (p= 0.22), type of surgical procedure (radical versus conservative, p=0.67), adjuvant chemotherapy (p=0.082) or marital status (p=0.98 ) were not statistically significant in decision making. Several patients submitted to adjuvant chemotherapy (41.6%) would accept hormonal replacement therapy under medical supervision, as did most of advanced clinical stage patients (58.3%; p=0.022). CONCLUSION: There is a high level of rejection for hormonal replacement therapy among breast cancer patients when current data on tumor cure rates, and potential risks of estrogen use is available. Adverse effects of tamoxifen in the adjuvant setting may be the reason for refusal of hormonal replacement therapy .
Resumo:
The use of testosterone in older men, known as male hormonal replacement therapy or androgen replacement therapy, has become of increasing interest to both the medical and lay communities over the past decade. Even though the knowledge of the potential benefits and risks of male Androgen Replacement Therapy has increased dramatically, there is still much that needs to be determined. Although there are a number of potential benefits of male Androgen Replacement Therapy and data concerning clinical effects of such replacement have accumulated, as yet there have not been any large multicenter randomized controlled trials of this therapy. It is the purpose of this article to review what is currently known about the possible risks and benefits of male Androgen Replacement Therapy by discussing the clinical trials to date.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.