998 resultados para Skin In-vitro
Resumo:
The flux of a compound across a membrane from any formulation, whether it contains penetration enhancers or not, is limited by its saturated solubility in the vehicle. Under such conditions the concentration of the permeant in the outer layers of the stratum corneum is also saturated. Consequently, when the permeation of a drug from a supersaturated solution leads to enhanced penetration, the concentration of the drug in the outer layers of the membrane is also supersaturated. Therefore, the stratum corneum may possess antinucleant properties which inhibit or retard the crystallisation process. In this study, the enhanced in vitro permeation of supersaturated solutions of piroxicam across human skin in diffusion cells was demonstrated. The amount of permeant in the stratum corneum was determined using a tape stripping technique. Supersaturated solutions up to four degrees of saturation were investigated which produced a linear relationship between the degree of saturation and the amount of piroxicam in the stratum corneum (R-2 = 0.970). Furthermore, the amount of piroxicam in the viable layers of the skin also increased with increasing degree of saturation. An analysis of the results suggested that enhanced penetration across human skin from supersaturated solutions of piroxicam may occur as a result of the antinucleating ability of the intercellular lipids of the stratum corneum. (C) 1997 Elsevier Science B.V.
Resumo:
The antimycotic activity of fatty acids has long been known, and their presence in human skin and sweat appears to protect the host against superficial mycoses. Undecanoic acid is a medium-chain fatty acid that has been used in the treatment of dermatophytoses in humans. In this study, we selected one Trichophyton rubrum undecanoic acid-resistant strain that showed a marked reduction in its capacity to grow on human nail fragments, which correlated with the reduced activity of secreted keratinolytic proteases. Moreover, the susceptibility of T. rubrum to undecanoic acid is also dependent on the carbon source utilized by both control and resistant strains. The growth of the control strain was strongly inhibited by undecanoic acid in Sabouraud medium or in cultures supplemented with low-fat milk, whereas it was ineffective when the cultures were supplemented with Tween 20 or keratin as the carbon source, suggesting that nutrient conditions are crucial in establishing a susceptibility to antifungal drugs, which is helpful for the isolation and characterization of resistant strains, and in the screening for new antifungal drugs.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect the skin and soft tissue of dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. While retinoids are well recognized as promising antitumor agents, there have been only a few reports about retinoids` effect on canine cancers. The aim of this study was to investigate the chemosensitivity of MCT grades II and III to all-trans retinoic acid (ATRA). Immediately after surgical resection, MCT were prepared for primary culture. Samples of MCTs were also fixed in formalin for histopathology and grading according to the classification of Patnaik et al. (Veterinary Pathology 21(5):469-474, 1984). The best results were obtained when neoplastic mast cells were co-cultivated with fibroblasts. Cultured mast cells were, then, treated with concentrations of 10(-4) to 10(-7) M of ATRA, in order to evaluate their chemosensitivity to this retinoid. MTT assay was performed to estimate cell growth and death. The highest level of mast cell chemosensivity was obtained at the dose of 10(-4) M (p < 0,002). MCT of grades II or III were equally susceptible to the treatment with ATRA. Cell death was observed on the first 24 h until 48 h. According to these results, ATRA may be a potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Purpose. The flux of a topically applied drug depends on the activity in the skin and the interaction between the vehicle and skin. Permeation of vehicle into the skin can alter the activity of drug and the properties of the skin barrier. The aim of this in vitro study was to separate and quantify these effects. Methods. The flux of four radiolabeled permeants (water, phenol, diflunisal, and diazepam) with log K-oct/water values from 1.4 to 4.3 was measured over 4 h through heat-separated human epidermis pretreated for 30 min with vehicles having Hildebrand solubility parameters from 7.9 to 23.4 (cal/cm(3))(1/2). Results. Enhancement was greatest after pretreatment with the more lipophilic vehicles. A synergistic enhancement was observed using binary mixtures. The flux of diazepam was not enhanced to the same extent as the other permeants, possibly because its partitioning into the epidermis is close to optimal (log K-oct 2.96). Conclusion. An analysis of the permeant remaining in the epidermis revealed that the enhancement can be the result of either increased partitioning of permeant into the epidermis or an increasing diffusivity of permeants through the epidermis.
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2015.
Resumo:
Since there are no studies evaluating the participation of the complement system (CS) in Jorge Lobo's disease and its activity on the fungus Lacazia loboi, we carried out the present investigation. Fungal cells with a viability index of 48% were obtained from the footpads of BALB/c mice and incubated with a pool of inactivated serum from patients with the mycosis or with sterile saline for 30 min at 37 ºC. Next, the tubes were incubated for 2 h with a pool of noninactivated AB+ serum, inactivated serum, serum diluted in EGTA-MgCl2, and serum diluted in EDTA. The viability of L. loboi was evaluated and the fungal suspension was cytocentrifuged. The slides were submitted to immunofluorescence staining using human anti-C3 antibody. The results revealed that 98% of the fungi activated the CS by the alternative pathway and no significant difference in L. loboi viability was observed after CS activation. In parallel, frozen histological sections from 11 patients were analyzed regarding the presence of C3 and IgG by immunofluorescence staining. C3 and IgG deposits were observed in the fungal wall of 100% and 91% of the lesions evaluated, respectively. The results suggest that the CS and immunoglobulins may contribute to the defense mechanisms of the host against L. loboi.
Resumo:
Recent changes in regulatory requirements and social views on animal testing have incremented the development of reliable alternative tests for predicting skin and ocular irritation potential of products based on new raw materials. In this regard, botanical ingredients used in cosmetic products are among those materials, and should be carefully reviewed concerning the potential presence of irritant constituents. In particular, cosmetic products used on the face, in vicinity of the eyes or that may come in contact with mucous membranes, should avoid botanical ingredients that contain, or are suspected to contain, such ingredients. In this study, we aimed to evaluate the effect of a new cosmetic ingredient, namely, coffee silverskin (CS), with an in vitro skin and ocular irritation assay using reconstructed human epidermis, EpiSkin™, and human corneal epithelial model, SkinEthics™ HCE, and an in vivo assay. Three different extracts of CS were evaluated. The histology of the models after extracts applications was analysed. The in vitro results demonstrated that extracts were not classified as irritant and the histological analyses proved that extracts did not affect both models structure. The content of caffeine, 5-hydroxymethyl furfural and chlorogenic acid was quantified after the epidermal assay. The in vivo test carried out with the most promising extract (hydroalcoholic) showed that, with respect to irritant effects, these extracts can be regarded as safe for topical application.
Resumo:
The in vitro susceptibility of dermatophytes to the azole antifungals itraconazole, fluconazole and ketoconazole was evaluated by broth macro and microdilution methods, according to recommendations of the CLSI, with some adaptations. Twenty nail and skin clinical isolates, four of Trichophyton mentagrophytes and 16 of T. rubrum were selected for the tests. Itraconazole minimal inhibitory concentrations (MIC) varied from < 0.03 to 0.25 µg/mL in the macrodilution and from < 0.03 to 0.5 µg/mL in the microdilution methods; for fluconazole, MICs were in the ranges of 0.5 to 64 µg/mL and 0.125 to 16 µg/mL by the macro and microdilution methods, respectively, and from < 0.03 to 0.5 µg/mL by both methods for ketoconazole. Levels of agreement between the two methods (± one dilution) were 70% for itraconazole, 45% for fluconazole and 85% for ketoconazole. It is concluded that the strains selected were inhibited by relatively low concentrations of the antifungals tested and that the two methodologies are in good agreement especially for itraconazole and ketoconazole.
Resumo:
The antifungal activities of fluconazole, itraconazole, ketoconazole, terbinafine and griseofulvin were tested by broth microdilution technique, against 60 dermatophytes isolated from nail or skin specimens from Goiania city patients, Brazil. In this study, the microtiter plates were incubated at 28 ºC allowing a reading of the minimal inhibitory concentration (MIC) after four days of incubation for Trichophyton mentagrophytes and five days for T. rubrum and Microsporum canis. Most of the dermatophytes had uniform patterns of susceptibility to the antifungal agents tested. Low MIC values as 0.03 µg/mL were found for 33.3%, 31.6% and 15% of isolates for itraconazole, ketoconazole and terbinafine, respectively.
Resumo:
INTRODUCTION: In this study, we aimed at identifying Candida isolates obtained from blood, urine, tracheal secretion, and nail/skin lesions from cases attended at the Hospital Universitário de Londrina over a 3-year period and at evaluating fluconazole susceptibilities of the isolates. METHODS: Candida isolates were identified by polymerase chain reaction (PCR) using species-specific forward primers. The in vitro fluconazole susceptibility test was performed according to EUCAST-AFST reference procedure. RESULTS: Isolates were obtained from urine (53.4%), blood cultures (19.2%), tracheal secretion (17.8%), and nail/skin lesions (9.6%). When urine samples were considered, prevalence was similar in women (45.5%) and in men (54.5%) and was high in the age group >61 years than that in younger ones. For blood samples, prevalence was high in neonates (35%) and advanced ages (22.5%). For nail and skin samples, prevalence was higher in women (71.4%) than in men (28.6%). Candida albicans was the most frequently isolated in the hospital, but Candida species other than C. albicans accounted for 64% of isolates, including predominantly Candida tropicalis (33.2%) and Candida parapsilosis (19.2%). The trend for non-albicans Candida as the predominant species was noted from all clinical specimens, except from urine samples. All Candida isolates were considered susceptible in vitro to fluconazole with the exception of isolates belonging to the intrinsically less-susceptible species C. glabrata. CONCLUSIONS: Non-albicans Candida species were more frequently isolated in the hospital. Fluconazole resistance was a rare finding in our study.
Resumo:
Experimental chronic (45-day-old) skin lesion in hamster hind foot induced by Leishmania (Viannia) lainsoni infection showed the presence of promastigote forms in the tissue, inside parasitophorous vacuoles, as assessed by transmission electron microscopy. Experimental in vitro interaction (24 and 48 h) between Leishmania (V.)lainsoni and J774-G8 macrophage cells also demonstrated the same profile. This morphological aspect is unusual, since in this parasite genus only amastigote forms have been described as the resistant and obligate intracellular forms.
Resumo:
The leishmanicidal activity of four batches of meglumine antimoniate, produced in Farmanguinhos-Fiocruz, Brazil (TAMs), was assessed and compared to Glucantime®-Aventis Pharma Ltda. Using the amastigote-like in vitro model, the active concentrations of Sb v varied from 10µg/ml to 300 µg/ml for L. (L.) chagasi and from 50µg/ml to 300µg/ml for L. (L.) amazonensis, with no statistically significant differences among the four batches of TAMs and Glucantime®. The inhibitory concentrations (IC50) determined by the amastigote-infected macrophage model for TAM01/03 and Glucantime® were, respectively: 26.3µg/ml and 127.6µg/ml for L. chagasi, 15.4µg /ml and 22.9µg/ml for L. amazonensis, and 12.1µg/ml and 24.2µg/ml for L. (V.) braziliensis. The activities of the four batches of TAMs were confirmed in an in vivo model by assessing, during eight weeks skin lesions caused by L. braziliensis in hamster that were treated with 20mg Sb v/Kg/day for 30 consecutive days. The meglumine antimoniate produced by Farmanguinhos was as effective as the reference drug, Glucantime®-Aventis, against three species of Leishmania that are of medical importance in Brazil.
Resumo:
Nonimmediate drug hypersensitivity reactions (DHRs) are difficult to manage in daily clinical practice, mainly owing to their heterogeneous clinical manifestations and the lack of selective biological markers. In vitro methods are necessaryto establish a diagnosis, especially given the low sensitivity of skin tests and the inherent risks of drug provocation testing. In vitro evaluation of nonimmediate DHRs must include approaches that can be applied during the different phases of the reaction. During the acute phase, monitoring markers in both skin and peripheral blood helps to discriminate between immediate and nonimmediate DHRs with cutaneous responses and to distinguish between reactions that, although they present similar clinical symptoms, are produced by different immunological mechanisms and therefore have a different treatment and prognosis. During the resolution phase, in vitro testing is used to detect the response of T cells to drug stimulation; however, this approach has certain limitations, such as the lack of validated studies assessing sensitivity. Moreover, in vitro tests indicate an immune response that is not always related to a DHR. In this review, members of the Immunology and Drug Allergy Committee of the Spanish Society of Allergy and Clinical Immunology (SEAIC) provide an overview of the most widely used in vitro tests for evaluating nonimmediate DHRs.
Resumo:
Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (μg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.