998 resultados para Skin Detection
Resumo:
The frequency and severity of human infections associated with Corynebacterium ulcerans appear to be increasing in different countries. Here, we describe the first C. ulcerans strain producing a diphtheria-like toxin isolated from an elderly woman with a fatal pulmonary infection and a history of leg skin ulcers in the Rio de Janeiro metropolitan area.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
The aim of this study was to investigate sensitivity disorders in the oral cavity related to the presence of Mycobacterium leprae in the saliva of treatment-naïve patients with leprosy in the state of Amazonas, Brazil. A cross-sectional study was conducted involving 45 subjects with leprosy. The subjects were interviewed to evaluate the sensitivity of the oral cavity. For the detection of M. leprae, saliva and slit-skin smear samples were collected. The samples were analysed using a bacteriological index (BI) protocol and the real-time quantitative polymerase chain reaction (qPCR). The results indicated that 15 of the 45 (33.3%) subjects with leprosy showed decreased oral sensitivity, which confirmed the importance of the oral cavity sensitivity evaluation. There was not a direct relationship between the presence of M. leprae in saliva and changes in oral sensitivity. Positive saliva qPCR results from six (31.6%) of 19 paucibacillary (PB) patients suggested the possibility of a new site for sample collection. Positive results using these diagnostic techniques (BI, slit-skin smear and saliva qPCR) increased to 55.5%, thus opening the possibility of combining these different techniques to increase the rate of positive diagnoses, especially in PB patients.
Resumo:
An online copy of a 1863 French book, The Scientific and Industrial Year (English translation of the title), that predates other historically significant writings about fingerprints suggests the use of iodine stains to reproduce papillary lines of the skin and suggests the feasibility of identifying suspects by touch. It also suggests the use of a magnifying glass for comparing those impressions whose origins need to be determined.
Resumo:
Background Euromelanoma is a skin cancer education and prevention campaign that started in 1999 in Belgium as 'Melanoma day'. Since 2000, it is active in a large and growing number of European countries under the name Euromelanoma. Objective To evaluate results of Euromelanoma in 2009 and 2010 in 20 countries, describing characteristics of screenees, rates of clinically suspicious lesions for skin cancer and detection rates of melanomas. Methods Euromelanoma questionnaires were used by 20 countries providing their data in a standardized database (Belgium, Croatia, Cyprus, Czech Republic, FYRO Macedonia, Germany, Greece, Hungary, Italy, Lithuania, Luxembourg, Malta, Moldavia, Portugal, Serbia, Slovenia, Spain, Sweden, Switzerland and Ukraine). Results In total, 59 858 subjects were screened in 20 countries. Most screenees were female (64%), median ages were 43 (female) and 46 (male) and 33% had phototype I or II. The suspicion rates ranged from 1.1% to 19.4% for melanoma (average 2.8%), from 0.0% to 10.7% for basal cell carcinoma (average 3.1%) and from 0.0% to 1.8% for squamous cell carcinoma (average 0.4%). The overall positive predictive value of countries where (estimation of) positive predictive value could be determined was 13.0%, melanoma detection rates varied from 0.1% to 1.9%. Dermoscopy was used in 78% of examinations with clinically suspected melanoma; full body skin examination was performed in 72% of the screenees. Conclusion Although the population screened during Euromelanoma was relatively young, high rates of clinically suspected melanoma were found. The efficacy of Euromelanoma could be improved by targeting high-risk populations and by better use of dermoscopy and full body skin examination.
Resumo:
BACKGROUND: Early detection is a major goal in the management of malignant melanoma. Besides clinical assessment many noninvasive technologies such as dermoscopy, digital dermoscopy and in vivo laser scanner microscopy are used as additional methods. Herein we tested a system to assess lesional perfusion as a tool for early melanoma detection.¦METHODS: Laser Doppler flow (FluxExplorer) and mole analyser (MA) score (FotoFinder) were applied to histologically verified melanocytic nevi (33) and malignant melanomas (12).¦RESULTS: Mean perfusion and MA scores were significantly increased in melanoma compared to nevi. However, applying an empirically determined threshold of 16% perfusion increase only 42% of the melanomas fulfilled the criterion of malignancy, whereas with the mole analyzer score 82% of the melanomas fulfilled the criterion of malignancy.¦CONCLUSION: Laser Doppler imaging is a highly sensitive technology to assess skin and skin tumor perfusion in vivo. Although mean perfusion is higher in melanomas compared to nevi the high numbers of false negative results hamper the use of this technology for early melanoma detection.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl(-1) of RNA material, without prior PCR amplification and use of labels.
Resumo:
With no less than 15,000 estimated new cases diagnosed per year, non melanomatous carcinomas are the commonest cutaneous cancers in the Swiss population. About 1 in 3 new cancer case is a basal (BCC) or a squamous cell carcinoma (SCC). Incidence rates are steadily increasing, faster for BCC than SCC. Rates are higher for men than women and increase exponentially with age. Systematic population-based registration of non melanomatous skin cancers faces many challenges that few cancer registries can meet. Rates of these cancers in Switzerland are among the highest in Europe. Primary and secondary nationwide prevention campaigns have been carried out for nearly 20 years with a focus on the deadliest cutaneous cancer: melanoma. However, detection of non melanomatous skin cancers benefits from these campaigns since prevention messages and means of early detection are similar for melanomas and other skin cancers.
Resumo:
The epidemiology of skin cancer shows interplay between host susceptibility, (ultraviolet) environment, socioeconomical conditions and behavioural patterns. Its etiology is not yet fully elucidated and reveals intriguing questions. Fair-skinned populations have experienced over the last 60 years a rapid increase in the incidence of melanoma which is unparalleled by any other cancer, although signs of levelling off and stabilization in incidence have recently been observed in some countries. Despite many primary prevention and early detection campaigns over the last decades in Europe, decreases in melanoma mortality are modest and limited to a few countries. Further, reduction in the incidence of thick melanomas has not yet been evidenced. In this presentation, drivers for the incidence and mortality trends of skin cancer, with a strong focus on melanoma, its most lethal form, will be discussed.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.