1000 resultados para Sistemas de equações diferenciais ordinárias não lineares
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.
Resumo:
Fenômenos oscilatórios e ressonantes são explorados em vários cursos experimentais de física. Em geral os experimentos são interpretados no limite de pequenas oscilações e campos uniformes. Neste artigo descrevemos um experimento de baixo custo para o estudo da ressonância em campo magnético da agulha de uma bússola fora dos limites acima. Nesse caso, termos não lineares na equação diferencial são responsáveis por fenômenos interessantes de serem explorados em laboratórios didáticos.
Resumo:
Este estudo, realizado no 8.º ano de escolaridade, tem como principal objetivo compreender como a calculadora gráfica medeia a aprendizagem das Funções e dos Sistemas de Equações. Foca-se na aprendizagem que os alunos fazem destes conceitos, na relação que estabelecem entre as várias representações e no modo como utilizam a calculadora gráfica na realização das tarefas propostas. Ao longo deste estudo, procura-se responder às seguintes questões: Como é que os alunos usam a calculadora gráfica na resolução de tarefas que envolvem Funções e Sistemas de Equações? Como é que os alunos integram o uso de diferentes representações do conceito de Função? Qual o papel deste artefacto enquanto mediador das aprendizagens? Far-se-á o enquadramento teórico baseado na literatura de referência, no que respeita ao processo de apropriação da calculadora gráfica por parte dos alunos; à álgebra e ao pensamento algébrico; às Funções e diferentes representações; aos Sistemas de Equações; à calculadora gráfica; ao papel do professor; às tarefas e à modelação matemática. Seguiu-se uma metodologia de investigação de natureza qualitativa, baseada num estudo de caso referente a alunos com desempenhos académicos distintos. A recolha de dados foi baseada na observação de aulas, nos registos escritos pelos alunos e na análise dos procedimentos recolhidos das calculadoras gráficas ao longo da realização das tarefas propostas. A investigadora assumiu, essencialmente, o papel de observadora participante. Da análise dos dados pode constatar-se que no seu trabalho com Funções e Sistemas de Equações, os alunos, optam muitas vezes pelo uso da calculadora gráfica, nomeadamente em questões relacionadas com a representação gráfica, no entanto, conseguem usar de forma eficaz as várias representações. As conclusões alcançadas apontam sobretudo para uma forma diferente de olhar estes temas quando a abordagem é feita através de várias representações com recurso à calculadora gráfica. Esta ferramenta, além de ser utilizada de diferentes modos, desempenhou um papel fundamental como mediadora das aprendizagens desenvolvidas.
Resumo:
Este estudo teve como objetivo principal projetar a distribuição diamétrica da floresta manejada através de um sistema de equações diferenciais de primeira ordem, ajustado para cada tratamento. Os dados básicos foram obtidos no Projeto Bom Manejo (Embrapa Amazônia Oriental/CIFOR/ITTO), na Companhia Florestal Monte Dourado (Jarí), Vitória do Jarí - AP. O delineamento é em blocos ao acaso com três repetições. Os tratamentos são combinações de intensidades de exploração (15%, 25% e 35% do volume total das árvores com mais de 60 cm de DAP) com intensidades de desbastes (0%, 30%, 50% e 70% da área basal original). Utilizou-se como controle a floresta não explorada. Na área experimental estão locadas 40 parcelas permanentes de 1,0 ha cada, sendo 36 exploradas e quatro não exploradas. O povoamento foi medido em 1984, explorado em 1985 e remedido em 1986, 1988, 1990, 1994, 1996 e 2004. Foram medidas todas as árvores com DAP ≥ 20 cm. Conquanto esse sistema de equações mantenha a simplicidade de abordagem do problema inerente aos modelos baseados em matrizes de transição, também apresenta sobre estes últimos a vantagem adicional de permitir a obtenção dos valores das variáveis de estado do sistema para qualquer ponto no tempo, não se restringindo a intervalos múltiplos do intervalo original usado na derivação da matriz de transição. Assim, o método foi constatado para diferentes períodos de avaliações e os resultados mostraram que nem os períodos de projeções mais longos (ponto de equilíbrio) serão suficientes para restaurar as condições iniciais do povoamento.
Resumo:
O tema das equações diferenciais está presente na esmagadora maioria dos planos de estudos dos cursos de licenciatura onde se estudam temas matemáticos. E o mesmo acontece no âmbito de muitos cursos de mestrado e até de doutoramento. De resto, o tema continua em franco desenvolvimento, muito em particular no subdomínio das equações diferenciais às derivadas parciais, e mormente ao nível das aplicações a casos concretos.
Resumo:
Este trabalho teve por objetivo analisar a viabilidade econômica da transformação de veículos de transporte florestal. Foram avaliadas duas situações: 1ª) carreta utilizada e retirada do processo após o fim de sua vida útil; 2ª) carreta utilizada, transformada em caminhão truck e, posteriormente, em caminhão toco. A equação diferencial foi utilizada para definir o momento ótimo das transformações. Os resultados obtidos indicaram que, no modelo sem transformação, obteve-se um tempo ótimo de utilização de nove anos, apresentando um Valor Anual Equivalente (VAE) de R$4.084,06. No modelo com transformação (carreta/truck/toco), obteve-se um (VAE) de R$10.555,04, indicando a viabilidade no sistema de transformação. Com base nos dados de custo e receita utilizados, a transformação (carreta/truck/toco) mostrou-se a melhor alternativa. Conclui-se que os modelos desenvolvidos permitem auxiliar a tomada de decisão referente à substituição de veículos de transporte.
Resumo:
Essa tese se propõe fazer uma comparação entre duas técnicas alternativas para estudo de impactos marginais de variáveis sócio-econômicas sobre as taxas de crescimento per-capita de grupos de países durante período de 1965 1985: regressão em sistemas de equações com dados em seções transversais, usada por Barro Sala-i-Martin (1995), entre outros, e a regressão em painel com coeficientes individuais. Tentaremos mostrar que os resultados associados certas variáveis são bastante diferentes procuraremos entender algumas causas dessas diferenças. Além disso, estaremos preocupados em avaliar como os resultados são afetados ao alterarmos conjunto de países estudado, em particular quando tomamos grupos de países com uma série de características semelhantes.
Resumo:
Neste trabalho, apresentaremos uma solução analítica, aplicando o método da decomposição de Adomian, para as equações da cinética pontual para reatividade arbitrária, um sistema de equações diferenciais ordinárias do tipo "Stiff". Apresen- taremos, ainda, simulações numéricas para as reatividades do tipo constante, linear, senoidal e exponencial, bem como faremos comparações com resultados disponíveis na literatura.
Resumo:
Neste trabalho apresentamos um novo método numérico com passo adaptativo baseado na abordagem de linearização local, para a integração de equações diferenciais estocásticas com ruído aditivo. Propomos, também, um esquema computacional que permite a implementação eficiente deste método, adaptando adequadamente o algorítimo de Padé com a estratégia “scaling-squaring” para o cálculo das exponenciais de matrizes envolvidas. Antes de introduzirmos a construção deste método, apresentaremos de forma breve o que são equações diferenciais estocásticas, a matemática que as fundamenta, a sua relevância para a modelagem dos mais diversos fenômenos, e a importância da utilização de métodos numéricos para avaliar tais equações. Também é feito um breve estudo sobre estabilidade numérica. Com isto, pretendemos introduzir as bases necessárias para a construção do novo método/esquema. Ao final, vários experimentos numéricos são realizados para mostrar, de forma prática, a eficácia do método proposto, e compará-lo com outros métodos usualmente utilizados.
Resumo:
O propósito principal desta tese é a extensão do espaço S′ (IR) das distribuições temperadas de Schwartz, usando o mesmo método de dualidade utilizado por Laurent Schwartz na sua Teoria das Distribuições (ver [Sch66]). Neste sentido, construímos um espaço de ultradistribuições exponenciais, X′, que é fechado para os operadores de derivação, translação complexa e transformação de Fourier. Para além destes operadores serem lineares e contínuos de X′ em X′, a translação complexa e a transformação de Fourier definem um isomorfismo vectorial e topológico neste espaço de ultradistribuições o que, como sabemos, generaliza o belo resultado de Schwartz para as distribuições temperadas. Estudamos as propriedades topológicas de X′ e demonstramos que o espaço S′ (IR) está contido com injecção canónica contínua e densa no nosso espaço de ultradistribuições exponenciais. A construção do espaço X′ baseia-se na estruturação de um espaço de funções teste X, que se injecta canónica, contínua e densamente em S (IR) . Este espaço X é um limite projectivo maximal de um espectro projectivo, constituído por espaços localmente convexos; definimos X′ como sendo o dual forte de X. Por fim, identificamos algumas ultradistribuições de X′, obtemos algumas séries de multipolos convergentes neste espaço e vemos que estas séries têm grande aplicabilidade na resolução de equações diferenciais ordinárias.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)