944 resultados para Sistemas de detecção de intrusão
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A análise de ocorrências no sistema de energia elétrica é de fundamento mportância para uma operação segura, e para manter a qualidade da energia elétrica lornecida aos consumidores. As concessionárias do setor de energia elétrica usam equipamentos, chamados registradores de perturbação (RP's), para monitora diagnosticar problemas nos sistemas elétrico e de proteção. As formas de onda normalmente analisadas nos centros de operação das concessionárias, são aquelas geradas por eventos que quase sempre causam a aocrtul je linhas devido a operação dos relés comandados pelos dispositivos de proteção .Contudo, uma grande quantidade de registros armazenados que podem conte informações importantes sobre o comportamento e desempenho do sistema elétricl jeixa de ser analisada. O objetivo desse trabalho é usar os dados disponíveis nos centros de ontrole, operação das concessionárias de energia elétrica obtidos pelos RP's, para classificar e quantificar de forma automática sinais que caracterizem problemas de qualidade da energia, quanto a variações de tensão de curta duração: afundamentos, elevações e interrupções. O método proposto usa a transformada wavelet para obter um vetor característico para as tensões das fases A, B e C, e uma rede neural probabilística para classificação. Os sinais classificados como apresentando variações de curta duração são quantilicados quanto a duração e amplitude, usando-se as propriedades da análise nultiresolução da decomposição do sinal. Esses parâmetros, então, irão formar uma Jase de dados onde procedimentos de análise estatística podem ser usados para gerar relatórios com as características da qualidade da energia. Os resultados obtidos com a metodologia proposta para um sistema real são também apresentados.
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recent studies have shown evidence of log-periodic behavior in non-hierarchical systems. An interesting fact is the emergence of such properties on rupture and breakdown of complex materials and financial failures. These may be examples of systems with self-organized criticality (SOC). In this work we study the detection of discrete scale invariance or log-periodicity. Theoretically showing the effectiveness of methods based on the Fourier Transform of the log-periodicity detection not only with prior knowledge of the critical point before this point as well. Specifically, we studied the Brazilian financial market with the objective of detecting discrete scale invariance in Bovespa (Bolsa de Valores de S˜ao Paulo) index. Some historical series were selected periods in 1999, 2001 and 2008. We report evidence for the detection of possible log-periodicity before breakage, shown its applicability to the study of systems with discrete scale invariance likely in the case of financial crashes, it shows an additional evidence of the possibility of forecasting breakage
Resumo:
The increasing demand in electricity and decrease forecast, increasingly, of fossil fuel reserves, as well as increasing environmental concern in the use of these have generated a concern about the quality of electricity generation, making it well welcome new investments in generation through alternative, clean and renewable sources. Distributed generation is one of the main solutions for the independent and selfsufficient generating systems, such as the sugarcane industry. This sector has grown considerably, contributing expressively in the production of electricity to the distribution networks. Faced with this situation, one of the main objectives of this study is to propose the implementation of an algorithm to detect islanding disturbances in the electrical system, characterized by situations of under- or overvoltage. The algorithm should also commonly quantize the time that the system was operating in these conditions, to check the possible consequences that will be caused in the electric power system. In order to achieve this it used the technique of wavelet multiresolution analysis (AMR) for detecting the generated disorders. The data obtained can be processed so as to be used for a possible predictive maintenance in the protection equipment of electrical network, since they are prone to damage on prolonged operation under abnormal conditions of frequency and voltage.