947 resultados para Single magnetic atom
Resumo:
Our work on single molecule magnets and multifunctional magnetic materials is presented in four projects. In the first project we show for first time that heteroatomic-type pseudohalides, such as OCN-, can be employed as structure-directing ligands and ferromagnetic couplers in higher oxidation state metal cluster chemistry. The initial use of cyanato groups in Mn cluster chemistry has afforded structurally interesting MnII/III14 (1) and MnII/III/IV16 (2) clusters in which the end-on bridging cyanates show a preference in binding through their O-atom. The Mn14 compound shows entirely visible out-of-phase alternating currect signals below 5 K and large hysteresis loops below 2 K. Furthermore, the amalgamation of azido groups with the triethanolamine tripodal ligand in manganese carboxylate cluster chemistry has led to the isolation of a new ferromagnetic, high-nuclearity and mixed-valence MnII/III15Na2 (3) cluster with a large ground-state spin value of S = 14. In the second project we demonstrate a new synthetic route to purely inorganic-bridged, transition metal-azido clusters [CoII7 (4) and NiII7 (5)] and coordination polymers [{FeII/III2}n (6)] which exhibit strong ferromagnetic, SMM and long-range magnetic ordering behaviors. We also show that access to such a unique ferromagnetic class of inorganic, N-rich and O-free materials is feasible through the use of Me3SiN3 as the azido-ligand precursor without requiring the addition of any organic chelating/bridging ligand. In the last projects we have tried to bring together molecular magnetism and optics via the synthesis of multifunctional magnetic materials based on 3d- or 4f-metal ions. We decided to approach such challenge from two different directions: firstly, in our third project, by the deliberate replacement of non-emissive carboxylato ligands in known 3d-SMMs with their fluorescent analogues, without perturbing the metal-core structure and SMM properties (complexes 7, 8, and 9). The second route (last project) involves the use of naphthalene or pyridine-based polyalcohol bridging ligands for the synthesis of new polynuclear LnIII metal clusters (Ln = lanthanide) with novel topologies, SMM behaviors and luminescent properties arising from the increased efficiency of the “antenna” organic group. This approach has led us to the isolation of two new families of LnIII8 (complexes 10-13) and LnIII4 (complexes 14-20) clusters.
Resumo:
The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly.
Resumo:
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
Resumo:
The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge. © 2008 American Institute of Physics.
Resumo:
Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.
Resumo:
We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
Two new copper(II) complexes, [Cu-2(L-1)(2)](ClO4)(2) (1) and [Cu(L-2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through sphenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independe N-(salicylidene) bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5-300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J=-23.6 cm(-1), which is substantiated by a DFT calculation (J=-27.6 cm(-1)) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.
Resumo:
Gadolinium strontium manganite single crystals of the composition Gd0.5Sr0.5MnO3 were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance similar to 10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd0.5Sr0.5MnO3 is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H-up, the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H-up values below similar to 20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
The proton magnetic resonance spectra of single crystals of Na2Zn(SO4)2·4H2O have been investigated and the orientations of the water molecules have been determined. Using the heavy atom structure determined by X-rays a system of hydrogen bonds between water and sulphate oxygens has been proposed.
Resumo:
Proton magnetic resonance spectra of single crystals of two Tutton's salts, K2Zn (SO4)2.6H22O and K2Mg (SO4)2.6H2O, have been studied and the orientations of the water molecules in the structure have been determined. Using the heavy-atom structure of (NH4) 2Mgt(SO4)2.6H2O as determined by x-ray diffraction, a system of hydrogen bonds between the water and sulfate oxygens in Tutton's salts has been proposed. It appears that the x-ray structure needs considerable refinement.
Resumo:
We investigate the structural, magnetic, and specific heat behavior of the hexagonal manganite Dy0.5Y0.5MnO3 in order to understand the effect of dilution of Dy magnetism with nonmagnetic yttrium. In this compound, the triangular Mn lattice orders antiferromagnetic at T-N(Mn) approximate to 68 K observed experimentally in the derivative of magnetic susceptibility as well as in specific heat. In addition, a low-temperature peak at T-N(Dy) similar to 3 K is observed in specific heat which is attributed to rare earth order. The T-N(Mn) increases by 9 K compared to that of hexagonal (h) DyMnO3 while T-N(Dy) is unchanged. A change in slope of thermal evolution of lattice parameters is observed to occur at temperature close to T-N(Mn). This hints at strong magnetoelastic coupling in this geometric multiferroic. In magnetization measurements, steplike features are observed when the magnetic field is applied along the c axis which shift to higher fields with temperature and vanish completely above 40 K. The presence of different magnetic phases at low temperature and strong magnetoelastic effects can lead to such field-induced transitions which resemble metamagnetic transitions. This indicates the possibility of strong field-induced effects in dielectric properties of this material, which is unexplored to date.