983 resultados para Simulation environments
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
Resumo:
The aim of this study was to assess the usefulness of virtual environments representing situations that are emotionally significant to subjects with eating disorders (ED). These environments may be applied with both evaluative and therapeutic aims and in simulation procedures to carry out a range of experimental studies. This paper is part of a wider research project analyzing the influence of the situation to which subjects are exposed on their performance on body image estimation tasks. Thirty female patients with eating disorders were exposed to six virtual environments: a living-room (neutral situation), a kitchen with highcalorie food, a kitchen with low-calorie food, a restaurant with high-calorie food, a restaurant with low-calorie food, and a swimming-pool. After exposure to each environment the STAI-S (a measurement of state anxiety) and the CDB (a measurement of depression) were administered to all subjects. The results show that virtual reality instruments are particularly useful for simulating everyday situations that may provoke emotional reactions such as anxiety and depression, in patients with ED. Virtual environments in which subjects are obliged to ingest high-calorie food provoke the highest levels of state anxiety and depression.
Resumo:
To optimally manage a metapopulation, managers and conservation biologists can favor a type of habitat spatial distribution (e.g. aggregated or random). However, the spatial distribution that provides the highest habitat occupancy remains ambiguous and numerous contradictory results exist. Habitat occupancy depends on the balance between local extinction and colonization. Thus, the issue becomes even more puzzling when various forms of relationships - positive or negative co-variation - between local extinction and colonization rate within habitat types exist. Using an analytical model we demonstrate first that the habitat occupancy of a metapopulation is significantly affected by the presence of habitat types that display different extinction-colonization dynamics, considering: (i) variation in extinction or colonization rate and (ii) positive and negative co-variation between the two processes within habitat types. We consequently examine, with a spatially explicit stochastic simulation model, how different degrees of habitat aggregation affect occupancy predictions under similar scenarios. An aggregated distribution of habitat types provides the highest habitat occupancy when local extinction risk is spatially heterogeneous and high in some places, while a random distribution of habitat provides the highest habitat occupancy when colonization rates are high. Because spatial variability in local extinction rates always favors aggregation of habitats, we only need to know about spatial variability in colonization rates to determine whether aggregating habitat types increases, or not, metapopulation occupancy. From a comparison of the results obtained with the analytical and with the spatial-explicit stochastic simulation model we determine the conditions under which a simple metapopulation model closely matches the results of a more complex spatial simulation model with explicit heterogeneity.
Resumo:
Data was analyzed on development of the solanaceen fruit crop Cape gooseberry to evaluate how well a classical thermal time model could describe node appearance in different environments. The data used in the analysis were obtained from experiments conducted in Colombia in open fields and greenhouse condition at two locations with different climate. An empirical, non linear segmented model was used to estimate the base temperature and to parameterize the model for simulation of node appearance vs. time. The base temperature (Tb) used to calculate the thermal time (TT, ºCd) for node appearance was estimated to be 6.29 ºC. The slope of the first linear segment was 0.023 nodes per TT and 0.008 for the second linear segment. The time at which the slope of node apperance changed was 1039.5 ºCd after transplanting, determined from a statistical analysis of model for the first segment. When these coefficients were used to predict node appearance at all locations, the model successfully fit the observed data (RSME=2.1), especially for the first segment where node appearance was more homogeneous than the second segment. More nodes were produced by plants grown under greenhouse conditions and minimum and maximum rates of node appearance rates were also higher.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.
Resumo:
L’innovation pédagogique pour elle-même s’avère parfois discutable, mais elle se justifie quand les enseignants se heurtent aux difficultés d’apprentissage de leurs étudiants. En particulier, certaines notions de physique sont réputées difficiles à appréhender par les étudiants, comme c’est le cas pour l’effet photoélectrique qui n’est pas souvent compris par les étudiants au niveau collégial. Cette recherche tente de déterminer si, dans le cadre d’un cours de physique, la simulation de l’effet photoélectrique et l’utilisation des dispositifs mobiles et en situation de collaboration favorisent une évolution des conceptions des étudiants au sujet de la lumière. Nous avons ainsi procédé à l’élaboration d’un scénario d’apprentissage collaboratif intégrant une simulation de l’effet photoélectrique sur un ordinateur de poche. La conception du scénario a d’abord été influencée par notre vision socioconstructiviste de l’apprentissage. Nous avons effectué deux études préliminaires afin de compléter notre scénario d’apprentissage et valider la plateforme MobileSim et l’interface du simulateur, que nous avons utilisées dans notre expérimentation : la première avec des ordinateurs de bureau et la seconde avec des ordinateurs de poche. Nous avons fait suivre à deux groupes d’étudiants deux cours différents, l’un portant sur une approche traditionnelle d’enseignement, l’autre basé sur le scénario d’apprentissage collaboratif élaboré. Nous leur avons fait passer un test évaluant l’évolution conceptuelle sur la nature de la lumière et sur le phénomène de l’effet photoélectrique et concepts connexes, à deux reprises : la première avant que les étudiants ne s’investissent dans le cours et la seconde après la réalisation des expérimentations. Nos résultats aux prétest et post-test sont complétés par des entrevues individuelles semi-dirigées avec tous les étudiants, par des enregistrements vidéo et par des traces récupérées des fichiers logs ou sur papier. Les étudiants du groupe expérimental ont obtenu de très bons résultats au post-test par rapport à ceux du groupe contrôle. Nous avons enregistré un gain moyen d’apprentissage qualifié de niveau modéré selon Hake (1998). Les résultats des entrevues ont permis de repérer quelques difficultés conceptuelles d’apprentissage chez les étudiants. L’analyse des données recueillies des enregistrements des séquences vidéo, des questionnaires et des traces récupérées nous a permis de mieux comprendre le processus d’apprentissage collaboratif et nous a dévoilé que le nombre et la durée des interactions entre les étudiants sont fortement corrélés avec le gain d’apprentissage. Ce projet de recherche est d’abord une réussite sur le plan de la conception d’un scénario d’apprentissage relatif à un phénomène aussi complexe que l’effet photoélectrique, tout en respectant de nombreux critères (collaboration, simulation, dispositifs mobiles) qui nous paraissaient extrêmement utopiques de réunir dans une situation d’apprentissage en classe. Ce scénario pourra être adapté pour l’apprentissage d’autres notions de la physique et pourra être considéré pour la conception des environnements collaboratifs d’apprentissage mobile innovants, centrés sur les besoins des apprenants et intégrant les technologies au bon moment et pour la bonne activité.
Resumo:
La tesis propone un marco de trabajo para el soporte de la toma de decisiones adecuado para soportar la ejecución distribuida de acciones cooperativas en entornos multi-agente dinámicos y complejos. Soporte para la toma de decisiones es un proceso que intenta mejorar la ejecución de la toma de decisiones en escenarios cooperativos. Este proceso ocurre continuamente en la vida diaria. Los humanos, por ejemplo, deben tomar decisiones acerca de que ropa usar, que comida comer, etc. En este sentido, un agente es definido como cualquier cosa que está situada en un entorno y que actúa, basado en su observación, su interpretación y su conocimiento acerca de su situación en tal entorno para lograr una acción en particular.Por lo tanto, para tomar decisiones, los agentes deben considerar el conocimiento que les permita ser consientes en que acciones pueden o no ejecutar. Aquí, tal proceso toma en cuenta tres parámetros de información con la intención de personificar a un agente en un entorno típicamente físico. Así, el mencionado conjunto de información es conocido como ejes de decisión, los cuales deben ser tomados por los agentes para decidir si pueden ejecutar correctamente una tarea propuesta por otro agente o humano. Los agentes, por lo tanto, pueden hacer mejores decisiones considerando y representando apropiadamente tal información. Los ejes de decisión, principalmente basados en: las condiciones ambientales, el conocimiento físico y el valor de confianza del agente, provee a los sistemas multi-agente un confiable razonamiento para alcanzar un factible y exitoso rendimiento cooperativo.Actualmente, muchos investigadores tienden a generar nuevos avances en la tecnología agente para incrementar la inteligencia, autonomía, comunicación y auto-adaptación en escenarios agentes típicamente abierto y distribuidos. En este sentido, esta investigación intenta contribuir en el desarrollo de un nuevo método que impacte tanto en las decisiones individuales como colectivas de los sistemas multi-agente. Por lo tanto, el marco de trabajo propuesto ha sido utilizado para implementar las acciones concretas involucradas en el campo de pruebas del fútbol robótico. Este campo emula los juegos de fútbol real, donde los agentes deben coordinarse, interactuar y cooperar entre ellos para solucionar tareas complejas dentro de un escenario dinámicamente cambiante y competitivo, tanto para manejar el diseño de los requerimientos involucrados en las tareas como para demostrar su efectividad en trabajos colectivos. Es así que los resultados obtenidos tanto en el simulador como en el campo real de experimentación, muestran que el marco de trabajo para el soporte de decisiones propuesto para agentes situados es capaz de mejorar la interacción y la comunicación, reflejando en un adecuad y confiable trabajo en equipo dentro de entornos impredecibles, dinámicos y competitivos. Además, los experimentos y resultados también muestran que la información seleccionada para generar los ejes de decisión para situar a los agentes, es útil cuando tales agentes deben ejecutar una acción o hacer un compromiso en cada momento con la intención de cumplir exitosamente un objetivo colectivo. Finalmente, algunas conclusiones enfatizando las ventajas y utilidades del trabajo propuesto en la mejora del rendimiento colectivo de los sistemas multi-agente en situaciones tales como tareas coordinadas y asignación de tareas son presentadas.
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.
Resumo:
Virtual Reality (VR) is widely used in visualizing medical datasets. This interest has emerged due to the usefulness of its techniques and features. Such features include immersion, collaboration, and interactivity. In a medical visualization context, immersion is important, because it allows users to interact directly and closelywith detailed structures in medical datasets. Collaboration on the other hand is beneficial, because it gives medical practitioners the chance to share their expertise and offer feedback and advice in a more effective and intuitive approach. Interactivity is crucial in medical visualization and simulation systems, because responsiveand instantaneous actions are key attributes in applications, such as surgical simulations. In this paper we present a case study that investigates the use of VR in a collaborative networked CAVE environment from a medical volumetric visualization perspective. The study will present a networked CAVE application, which has been built to visualize and interact with volumetric datasets. We will summarize the advantages of such an application and the potential benefits of our system. We also will describe the aspects related to this application area and the relevant issues of such implementations.
Resumo:
A desktop tool for replay and analysis of gaze-enhanced multiparty virtual collaborative sessions is described. We linked three CAVE (TM)-like environments, creating a multiparty collaborative virtual space where avatars are animated with 3D gaze as well as head and hand motions in real time. Log files are recorded for subsequent playback and analysis Using the proposed software tool. During replaying the user can rotate the viewpoint and navigate in the simulated 3D scene. The playback mechanism relies on multiple distributed log files captured at every site. This structure enables an observer to experience latencies of movement and information transfer for every site as this is important fir conversation analysis. Playback uses an event-replay algorithm, modified to allow fast traversal of the scene by selective rendering of nodes, and to simulate fast random access. The tool's is analysis module can show each participant's 3D gaze points and areas where gaze has been concentrated.
Resumo:
User interfaces have the primary role of enabling access to information meeting individual users' needs. However, the user-systems interaction is still rigid, especially in support of complex environments where various types of users are involved. Among the approaches for improving user interface agility, we present a normative approach to the design interfaces of web applications, which allow delivering users personalized services according to parameters extracted from the simulation of norms in the social context. A case study in an e-Government context is used to illustrate the implications of the approach.
Resumo:
Techniques for modelling urban microclimates and urban block surfaces temperatures are desired by urban planners and architects for strategic urban designs at the early design stages. This paper introduces a simplified mathematical model for urban simulations (UMsim) including urban surfaces temperatures and microclimates. The nodal network model has been developed by integrating coupled thermal and airflow model. Direct solar radiation, diffuse radiation, reflected radiation, long-wave radiation, heat convection in air and heat transfer in the exterior walls and ground within the complex have been taken into account. The relevant equations have been solved using the finite difference method under the Matlab platform. Comparisons have been conducted between the data produced from the simulation and that from an urban experimental study carried out in a real architectural complex on the campus of Chongqing University, China in July 2005 and January 2006. The results show a satisfactory agreement between the two sets of data. The UMsim can be used to simulate the microclimates, in particular the surface temperatures of urban blocks, therefore it can be used to assess the impact of urban surfaces properties on urban microclimates. The UMsim will be able to produce robust data and images of urban environments for sustainable urban design.
Resumo:
The aim of this paper is to illustrate the impact of urban wind environments when assessing the availability of natural ventilation. A numerical study of urban airflow for a complex of five building blocks located at the University of Reading, UK is presented. The computational fluid dynamics software package ANSYS was used to simulate six typical cases of urban wind environments and the potential for natural ventilation assessed. The study highlights the impact of three typical architectural forms (street canyons, semi-enclosures and courtyards) on the local wind environment. Simulation results have also been compared with experimental data collected from six locations on the building complex. The study demonstrates that ventilation strategies formed using regional weather data, may have a propensity to over-estimate the potential for natural ventilation and cooling, due to the impact of urban form which creates a unique microclimate. Characteristics of urban wind flow patterns are presented as a guideline and can be used to assess the design and performance of natural or hybrid ventilation and the opportunity for passive cooling.