953 resultados para Simulated annealing algorithms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-Organizing Map (SOM) algorithm has been extensively used for analysis and classification problems. For this kind of problems, datasets become more and more large and it is necessary to speed up the SOM learning. In this paper we present an application of the Simulated Annealing (SA) procedure to the SOM learning algorithm. The goal of the algorithm is to obtain fast learning and better performance in terms of matching of input data and regularity of the obtained map. An advantage of the proposed technique is that it preserves the simplicity of the basic algorithm. Several tests, carried out on different large datasets, demonstrate the effectiveness of the proposed algorithm in comparison with the original SOM and with some of its modification introduced to speed-up the learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: The program LVB seeks parsimonious phylogenies from nucleotide alignments, using the simulated annealing heuristic. LVB runs fast and gives high quality results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os algoritmos baseados no paradigma Simulated Annealing e suas variações são atualmente usados de forma ampla na resolução de problemas de otimização de larga escala. Esta popularidade é resultado da estrutura extremamente simples e aparentemente universal dos algoritmos, da aplicabilidade geral e da habilidade de fornecer soluções bastante próximas da ótima. No início da década de 80, Kirkpatrick e outros apresentaram uma proposta de utilização dos conceitos de annealing (resfriamento lento e controlado de sólidos) em otimização combinatória. Esta proposta considera a forte analogia entre o processo físico de annealing e a resolução de problemas grandes de otimização combinatória. Simulated Annealing (SA) é um denominação genérica para os algoritmos desenvolvidos com base nesta proposta. Estes algoritmos combinam técnicas de busca local e de randomização. O objetivo do presente trabalho é proporcionar um entendimento das características do Simulated Annealing e facilitar o desenvolvimento de algoritmos com estas características. Assim, é apresentado como Simulated Annealing e suas variações estão sendo utilizados na resolução de problemas de otimização combinatória, proposta uma formalização através de um método de desenvolvimento de algoritmos e analisados aspectos de complexidade. O método de desenvolvimento especifica um programa abstrato para um algoritmo Simulated Annealing seqüencial, identifica funções e predicados que constituem os procedimentos deste programa abstrato e estabelece axiomas que permitem a visualização das propriedades que estes procedimentos devem satisfazer. A complexidade do Simulated Annealing é analisada a partir do programa abstrato desenvolvido e de seus principais procedimentos, permitindo o estabelecimento de uma equação genérica para a complexidade. Esta equação genérica é aplicável aos algoritmos desenvolvidos com base no método proposto. Uma prova de correção é apresentada para o programa abstrato e um código exemplo é analisado com relação aos axiomas estabelecidos. O estabelecimento de axiomas tem como propósito definir uma semântica para o algoritmo, o que permite a um desenvolvedor analisar a correção do código especificado para um algoritmo levando em consideração estes axiomas. O trabalho foi realizado a partir de um estudo introdutório de otimização combinatória, de técnicas de resolução de problemas, de um levantamento histórico do uso do Simulated Annealing, das variações em torno do modelo e de embasamentos matemáticos documentados. Isto permitiu identificar as características essenciais dos algoritmos baseados no paradigma, analisar os aspectos relacionados com estas características, como as diferentes formas de realizar uma prescrição de resfriamento e percorrer um espaço de soluções, e construir a fundamentação teórica genérica proposta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a Parallel Simulated Annealing, PSA, algorithm for solving the long term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the Sequential Simulated Annealing algorithm have been implementeded and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network, and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the Parallel Simulated Annealing algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor network (WSN) Is a technology that can be used to monitor and actuate on environments in a non-intrusive way. The main difference from WSN and traditional sensor networks is the low dependability of WSN nodes. In this way, WSN solutions are based on a huge number of cheap tiny nodes that can present faults in hardware, software and wireless communication. The deployment of hundreds of nodes can overcome the low dependability of individual nodes, however this strategy introduces a lot of challenges regarding network management, real-time requirements and self-optimization. In this paper we present a simulated annealing approach that self-optimize large scale WSN. Simulation results indicate that our approach can achieve self-optimization characteristics in a dynamic WSN. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.