896 resultados para Simplified design method
Resumo:
Philosophers expend considerable effort on the analysis of concepts, but the value of such work is not widely appreciated. This paper principally analyses some arguments, beliefs, and presuppositions about the nature of design and the relations between design and science common in the literature to illustrate this point, and to contribute to the foundations of design theory.
Resumo:
The simultaneous design of the steady-state and dynamic performance of a process has the ability to satisfy much more demanding dynamic performance criteria than the design of dynamics only by the connection of a control system. A method for designing process dynamics based on the use of a linearised systems' eigenvalues has been developed. The eigenvalues are associated with system states using the unit perturbation spectral resolution (UPSR), characterising the dynamics of each state. The design method uses a homotopy approach to determine a final design which satisfies both steady-state and dynamic performance criteria. A highly interacting single stage forced circulation evaporator system, including control loops, was designed by this method with the goal of reducing the time taken for the liquid composition to reach steady-state. Initially the system was successfully redesigned to speed up the eigenvalue associated with the liquid composition state, but this did not result in an improved startup performance. Further analysis showed that the integral action of the composition controller was the source of the limiting eigenvalue. Design changes made to speed up this eigenvalue did result in an improved startup performance. The proposed approach provides a structured way to address the design-control interface, giving significant insight into the dynamic behaviour of the system such that a systematic design or redesign of an existing system can be undertaken with confidence.
Resumo:
An improved method for counting virus and virus like particles by electron microscopy (EM) was developed. The procedure involves the determination of the absolute concentration of pure or semi-pure particles once deposited evenly on EM grids using either centrifugation or antibody capture techniques. The counting of particles was done with a Microfiche unit which enlarged approximately 50 x the image of particles on a developed negative film which had been taken at a relatively low magnification (2500 x) by EM. Initially, latex particles of a known concentration were counted using this approach, to prove the accuracy of the technique. The latex particles were deposited evenly on an EM grid using centrifugation (Modified Beckmen EM-90 Airfuge technique). Subsequently, recombinant Bluetongue virus (BTV) core-like particles (CLPs) captured by a Monoclonal antibody using a hovel sample loading method were counted by the Microfiche unit method and by a direct EM method. Comparison of the simplified counting method developed with a conventional method, showed good agreement. The method is simple, accurate, rapid, and reproducible when used with either pure particles or with particles from crude cell culture extracts.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
ISSN 19820941
Resumo:
Abdominal Aortic Aneurysms (AAA) haemorhaging is a life-threatening disease. An aneurysm is a permanent swelling of an artery due to a weakness in its wall. Current surgical repair involves opening the chest or abdomen, gaining temporary vascular control of the aorta and suturing a prosthetic graft to the healthy aorta within the aneurysm itself The outcome of this surgical approach is not perfect, and the quality of life after this repair is impaired by postoperative pain, sexual dysfunction, and a lengthy hospital stay resulting in high health costs. All these negative effects are related to the large incision and extensive tissue dissection. Endovascular grafting is an alternative to the standard surgical method. This treatment is a less invasive method of treating aortic aneurysms. It involves a surgical exposure of the common femoral arteries where the stent graft can be inserted through by an over-the-wire technique. All manipulations are controlled from a remote place by the use of a catheter and this technique avoids the need to directly expose the diseased artery through a large incision or an extensive dissection. The proposed design method outlined in this project is to develop the endovascular approach. The main aim is to design an unitary bifurcated stent graft (1 e- bifurcated graft as a single component) to treat these Abdominal Aortic Aneurysms. This includes the delivery system and deployment mechanism necessary to first accurately position the stent graft across the aneurysm sac and also across the iliac bifurcation, and secondly fix the stent graft in position by using expandable metal stents. Thus, excluding the aneurysm from the circulation and therefore preventing rupture. Miniaturisation is a critical aspect of this design, as the smaller the crimped stent graft the easier to guide through the vascular system to the desired location. Biocompatibility is an important aspect. The preferred materials for this prosthesis are to use Shape Memory Alloys for the stent and a multifilament fabric for the graft. A taper design is applied for the geometry as this gives a favourable flow characteristic and reduced wave reflections. Adequate testing of the stent graft to prove its durability and the ease of the method of deployment is a prerequisite. A bench test facility has being designed and build to replicate the cardiovascular system and the disease in question aortic aneurysms at the iliac bifurcation. The testing here shows the feasibility of the proposed delivery system and the durability of the stent graft across the aneurysm sac. Finally, these endovascular treatments offer the economic advantage of short hospital stays or even treatment as an outpatient, as well as elimination of the need for postoperative intensive care The risk of developing an aneurysm increases with age, that is one of the mam reasons to look for less invasive ways of treating aneurysms. Consequently, there is enormous pressure to develop and use these devices rapidly.
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
In recent years the Iowa Department of Transportation has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for evaluating pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. Road Rater non-destructive testing has fulfilled this need and has been used successfully to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays and portland cement concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by various individuals who are involved in pavement restoration and management. Road Rater evaluation techniques have worked well to date and have been verified by pavement coring, soils sampling and testing. Void detection testing has also been performed, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater evaluation techniques are reasonably accurate. The success of Road Rater research and development has made dynamic deflection test data an important pavement management input.
Resumo:
More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.
Resumo:
Three pavement design software packages were compared with regards to how they were different in determining design input parameters and their influences on the pavement thickness. StreetPave designs the concrete pavement thickness based on the PCA method and the equivalent asphalt pavement thickness. The WinPAS software performs both concrete and asphalt pavements following the AASHTO 1993 design method. The APAI software designs asphalt pavements based on pre-mechanistic/empirical AASHTO methodology. First, the following four critical design input parameters were identified: traffic, subgrade strength, reliability, and design life. The sensitivity analysis of these four design input parameters were performed using three pavement design software packages to identify which input parameters require the most attention during pavement design. Based on the current pavement design procedures and sensitivity analysis results, a prototype pavement design and sensitivity analysis (PD&SA) software package was developed to retrieve the pavement thickness design value for a given condition and allow a user to perform a pavement design sensitivity analysis. The prototype PD&SA software is a computer program that stores pavement design results in database that is designed for the user to input design data from the variety of design programs and query design results for given conditions. The prototype Pavement Design and Sensitivity Analysis (PA&SA) software package was developed to demonstrate the concept of retrieving the pavement design results from the database for a design sensitivity analysis. This final report does not include the prototype software which will be validated and tested during the next phase.
Resumo:
In this research manufacturability analysis is made for an E-plane waveguide ring resonator. About the electrical characteristics of the waveguide ring resonator is discussed. Possibilities to utilize concurrent engineering method both for designing and making manufacturability analysis for MW- and RF-components are discussed. For helping to establish the necessary guidelines for easy manufacturing and assembly of the waveguide ring resonator a specialised DFM(A)-questionnaire is generated. The questionnaire gives also new information for collaborative designing approach in MW-/RF- engineering. The advantages and disadvantages of the concurrent engineering design method are evaluated in the research.
Resumo:
Työn tarkoituksena oli tutkia menetelmiä koneiden valmistuskustannusten arvioimiseksi ja hyödyntää kustannustietoa tuotekehitysprosessissa. Taloudellisen suunnittelun menetelmäksi valittiin DFMA -menetelmä. DFMA -menetelmä on suunnittelustrategia, jonka tarkoituksena on ottaa huomioon suunniteltavan tuotteen valmistuskustannukset ja valmistettavuus mahdollisimman aikaisessa tuotekehitysprosessin vaiheessa. Työn soveltavassa osassa käsiteltiin Rauten uutta puristinlinjaa, jolle arvioitiin valmistuskustannukset. Jatkokehitys kohdennettiin kustannusten painopistealueisiin kokoonpanossa ja valituille kokoonpanoille tehtiin muutoksia valmistuskustannusten pienentämiseksi. Kehitetyille kokoonpanoille arvioitiin uudet valmistuskustannukset ja puristimen mekaanisissa osissa saatiin valmistuskustannuksia pienennetyksi n. 22,6 %, joka oli n. 8,5 % koko puristinlinjan yhteenlasketuista kokonaiskustannuksista. Valmistuskustannusten arvioiminen koneen jokaista komponenttia kohden todettiin olevan liian työlästä. Arviointityön helpottamiseksi alettiin kehittää kustannusten arviointijärjestelmää, jonka avulla koneen muuttuvat materiaali- ja osto-osista aiheutuvat kustannukset saataisiin arvioiduksi. Materiaali ja osto-osien kustannukset aiheuttavat yleensä suurimman osan koko koneen valmistuskustannuksista, joten muista valmistusvaiheista kuten kokoonpanosta, koneistuksesta jne. aiheutuvat kustannukset voidaan arvioida karkeammin.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.