839 resultados para Simplex. CPLEXR. Parallel Efficiency. Parallel Scalability. Linear Programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to present organizational models for optimizing the reduction of crop residue generated by the sugarcane culture. The first model consisted of the selection of varieties of sugarcane to be planted meeting the mill requirements and, at the same time, to minimize the quantity of residue produced. The second model discussed the use of residue to produce energy. This is related to the selection of variety and quantity to be planted, in order to meet the requirements of the mill, to reduce the quantity of residue, and to maximize as much as possible the energy production. The use of linear programming was proposed. The two models presented similar results in this study, and both may be used to define the varieties and areas to be cultivated. (C) 2001 Published by Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-linear model is presented which optimizes the lay-out, as well as the design and management of trickle irrigation systems, to achieve maximum net benefit. The model consists of an objective function that maximizes profit at the farm level, subject to appropriate geometric and hydraulic constraints. It can be applied to rectangular shaped fields, with uniform or zero slope. The software used is the Gams-Minos package. The basic inputs are the crop-water-production function, the cost function and cost of system components, and design variables. The main outputs are the annual net benefit and pipe diameters and lengths. To illustrate the capability of the model, a sensitivity analysis of the annual net benefit for a citrus field is evaluated with respect to irrigated area, ground slope, micro-sprinkler discharge and shape of the field. The sensitivity analysis suggests that the greatest benefit is obtained with the smallest microsprinkler discharge, the greatest area, a square field and zero ground slope. The costs of the investment and energy are the components of the objective function that had the greatest effect in the 120 situations evaluated. (C) 1996 Academic Press Limited

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quando a área a ser irrigada apresenta um elevado gradiente de declive na direção das linhas de derivação, uma opção de dimensionamento é o uso de tubulações com vários diâmetros para economizar no custo e também para manter a variação de pressão dentro dos limites desejados. O objetivo deste trabalho foi desenvolver um modelo de programação linear para dimensionar sistemas de irrigação por microaspersão com linhas de derivação com mais de um diâmetro e operando em declive, visando a minimização do custo anualizado da rede hidráulica e do custo anual com energia elétrica, além de assegurar que a máxima variação de carga hidráulica na linha será respeitada. Os dados de entrada são: configuração da rede hidráulica do sistema de irrigação, custo de todos os componentes da rede hidráulica e custo da energia. Os dados de saída são: custo anual total, diâmetro da tubulação em cada linha do sistema, carga hidráulica em cada ponto de derivação e altura manométrica total. Para ilustrar a potencialidade do modelo desenvolvido, ele foi aplicado em um pomar de citros no Estado de São Paulo, Brasil. O modelo demonstrou ser eficiente no dimensionamento do sistema de irrigação quanto à obtenção da uniformidade de emissão desejada. O custo anual com bombeamento deve ser considerado no dimensionamento de sistemas de irrigação por microaspersão porque ele gera menores valores de custo anual total quando comparado com a mesma alternativa que não considera aquele custo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper treats the problem of setting the inventory level and optimizing the buffer allocation of closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a very large but simple linear program that models an entire simulation run of a closed-loop flow line in discrete time to determine a production rate estimate of the system. This approach introduced in Helber, Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy of the method. In the second part, we focus on the relationship between the CONWIP inventory level and the short-term profit. The accuracy of the method turns out to be best for such configurations that maximize production rate and/or short-term profit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.