951 resultados para Significance-driven computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical Stratigraphy, or the study of the variation of chemical elements within sedimentary sequences, has gradually become an experienced tool in the research and correlation of global geologic events. In this paper 87Sr/ 86Sr ratios of the Triassic marine carbonates (Muschelkalk facies) of southeast Iberian Ranges, Iberian Peninsula, are presented and the representative Sr-isotopic curve constructed for the upper Ladinian interval. The studied stratigraphic succession is 102 meters thick, continuous, and well preserved. Previous paleontological data from macro and micro, ammonites, bivalves, foraminifera, conodonts and palynological assemblages, suggest a Fassanian-Longobardian age (Late Ladinian). Although diagenetic minerals are present in small amounts, the elemental data content of bulk carbonate samples, especially Sr contents, show a major variation that probably reflects palaeoenvironmental changes. The 87Sr/86Sr ratios curve shows a rise from 0.707649 near the base of the section to 0.707741 and then declines rapidly to 0.707624, with a final values rise up to 0.70787 in the upper part. The data up to meter 80 in the studied succession is broadly concurrent with 87Sr/86Sr ratios of sequences of similar age and complements these data. Moreover, the sequence stratigraphic framework and its key surfaces, which are difficult to be recognised just based in the facies analysis, are characterised by combining variations of the Ca, Mg, Mn, Sr and CaCO3 contents

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This talk explores how the runtime system and operating system can leverage metrics that express the significance and resilience of application components in order to reduce the energy footprint of parallel applications. We will explore in particular how software can tolerate and indeed exploit higher error rates in future processors and memory technologies that may operate outside their safe margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests if in fact it should be m - 1. If the hypothesis is rejected, m is increased and a new test is carried out. The method continues (increasing m) until the hypothesis is accepted. The theoretical core of the method is the full Bayesian significance test, an intuitive Bayesian approach, which needs no model complexity penalization nor positive probabilities for sharp hypotheses. Numerical experiments were based on a cDNA microarray dataset consisting of expression levels of 205 genes belonging to four functional categories, for 10 distinct strains of Saccharomyces cerevisiae. To analyze the method's sensitivity to data dimension, we performed principal components analysis on the original dataset and predicted the number of classes using 2 to 10 principal components. Compared to Mclust (model-based clustering), our method shows more consistent results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A relative friability to capture a sufficiently large patient population in any one geographic location has traditionally limited research into rare diseases. Methods and Results: Clinicians interested in the rare disease lymphangioleiomyomatosis (LAM) have worked with the LAM Treatment Alliance, the MIT Media Lab, and Clozure Associates to cooperate in the design of a state-of-the-art data coordination platform that can be used for clinical trials and other research focused on the global LAM patient population. This platform is a component of a set of web-based resources, including a patient self-report data portal, aimed at accelerating research in rare diseases in a rigorous fashion. Conclusions: Collaboration between clinicians, researchers, advocacy groups, and patients can create essential community resource infrastructure to accelerate rare disease research. The International LAM Registry is an example of such an effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically greater than or similar to 1 kpc). Aims. From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57 degrees 2874. Methods. For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Results. Thanks to the short computing time required by FRACS (<10 s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57 degrees 2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. Conclusions. The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During some discharges in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao et al., Plasma Phys. Controlled Fusion 43, 1181 (2001)] high magnetohydrodynamic activity may appear with a peaked frequency spectrum. Whenever this peak occurs, the ambient broadband electrostatic turbulence is remarkably modified, synchronizing into the dominant magnetic fluctuation frequency and presenting high bicoherence in the whole plasma edge with a maximum bicoherence inside the plasma. A phenomenological model is introduced to investigate this driven turbulence bicoherence, consisting of nonlinearly coupled phase-randomized drift modes with time-periodic external driving at the dominant magnetic fluctuation frequency. The bicoherence spectrum of this model can mimic features of the experimental results. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3099701]