848 resultados para Signal spectrum
Resumo:
Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resistance to a spectrum of pathogens. To identify components of the signal transduction pathways regulating SAR, a mutant screen was developed that uses 2,6-dichloroisonicotinic acid as an activator of SAR gene expression and pathogen resistance, followed by assays for resistance to the fungal pathogen Peronospora parasitica. Mutants from this screen were subsequently examined to assess their defense responses. We describe here a recessive mutation that causes a phenotype of insensitivity to chemical and biological inducers of SAR genes and resistance. These data indicate the existence of a common signaling pathway that couples these diverse stimuli to induction of SAR genes and resistance. Because of its non-inducible immunity phenotype, we call this mutant nim1. Although nim1 plants fail to respond to SA, they retain the ability to accumulate wild-type levels of SA, a probable endogenous signal for SAR. Further, the ability of nim1 plants to support growth of normally incompatible races of a fungal pathogen indicates a role for this pathway in expression of genetically determined resistance, consistent with earlier findings for transgenic plants engineered to break down SA. These results suggest that the wild-type NIM1 gene product functions in a pathway regulating acquired resistance, at a position downstream of SA accumulation and upstream of SAR gene induction and expression of resistance.
Resumo:
This paper derives the performance union bound of space-time trellis codes in orthogonal frequency division multiplexing system (STTC-OFDM) over quasi-static frequency selective fading channels based on the distance spectrum technique. The distance spectrum is the enumeration of the codeword difference measures and their multiplicities by exhausted searching through all the possible error event paths. Exhaustive search approach can be used for low memory order STTC with small frame size. However with moderate memory order STTC and moderate frame size the computational cost of exhaustive search increases exponentially, and may become impractical for high memory order STTCs. This requires advanced computational techniques such as Genetic Algorithms (GAS). In this paper, a GA with sharing function method is used to locate the multiple solutions of the distance spectrum for high memory order STTCs. Simulation evaluates the performance union bound and the complexity comparison of non-GA aided and GA aided distance spectrum techniques. It shows that the union bound give a close performance measure at high signal-to-noise ratio (SNR). It also shows that GA sharing function method based distance spectrum technique requires much less computational time as compared with exhaustive search approach but with satisfactory accuracy.
Resumo:
In this work we introduce the periodic nonlinear Fourier transform (PNFT) and propose a proof-of-concept communication system based on it by using a simple waveform with known nonlinear spectrum (NS). We study the performance (addressing the bit-error-rate (BER), as a function of the propagation distance) of the transmission system based on the use of the PNFT processing method and show the benefits of the latter approach. By analysing our simulation results for the system with lumped amplification, we demonstrate the decent potential of the new processing method.
Resumo:
We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
Terrestrial remote sensing imagery involves the acquisition of information from the Earth's surface without physical contact with the area under study. Among the remote sensing modalities, hyperspectral imaging has recently emerged as a powerful passive technology. This technology has been widely used in the fields of urban and regional planning, water resource management, environmental monitoring, food safety, counterfeit drugs detection, oil spill and other types of chemical contamination detection, biological hazards prevention, and target detection for military and security purposes [2-9]. Hyperspectral sensors sample the reflected solar radiation from the Earth surface in the portion of the spectrum extending from the visible region through the near-infrared and mid-infrared (wavelengths between 0.3 and 2.5 µm) in hundreds of narrow (of the order of 10 nm) contiguous bands [10]. This high spectral resolution can be used for object detection and for discriminating between different objects based on their spectral xharacteristics [6]. However, this huge spectral resolution yields large amounts of data to be processed. For example, the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [11] collects a 512 (along track) X 614 (across track) X 224 (bands) X 12 (bits) data cube in 5 s, corresponding to about 140 MBs. Similar data collection ratios are achieved by other spectrometers [12]. Such huge data volumes put stringent requirements on communications, storage, and processing. The problem of signal sbspace identification of hyperspectral data represents a crucial first step in many hypersctral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction (DR) yelding gains in data storage and retrieval and in computational time and complexity. Additionally, DR may also improve algorithms performance since it reduce data dimensionality without losses in the useful signal components. The computation of statistical estimates is a relevant example of the advantages of DR, since the number of samples required to obtain accurate estimates increases drastically with the dimmensionality of the data (Hughes phnomenon) [13].
Resumo:
This thesis is an investigation of structural brain abnormalities, as well as multisensory and unisensory processing deficits in autistic traits and Autism Spectrum Disorder (ASD). To achieve this, structural and functional magnetic resonance imaging (fMRI) and psychophysical techniques were employed. ASD is a neurodevelopmental condition which is characterised by the social communication and interaction deficits, as well as repetitive patterns of behaviour, interests and activities. These traits are thought to be present in a typical population. The Autism Spectrum Quotient questionnaire (AQ) was developed to assess the prevalence of autistic traits in the general population. Von dem Hagen et al. (2011) revealed a link between AQ with white matter (WM) and grey matter (GM) volume (using voxel-based-morphometry). However, their findings revealed no difference in GM in areas associated with social cognition. Cortical thickness (CT) measurements are known to be a more direct measure of cortical morphology than GM volume. Therefore, Chapter 2 investigated the relationship between AQ scores and CT in the same sample of participants. This study showed that AQ scores correlated with CT in the left temporo-occipital junction, left posterior cingulate, right precentral gyrus and bilateral precentral sulcus, in a typical population. These areas were previously associated with structural and functional differences in ASD. Thus the findings suggest, to some extent, autistic traits are reflected in brain structure - in the general population. The ability to integrate auditory and visual information is crucial to everyday life, and results are mixed regarding how ASD influences audiovisual integration. To investigate this question, Chapter 3 examined the Temporal Integration Window (TIW), which indicates how precisely sight and sound need to be temporally aligned so that a unitary audiovisual event can be perceived. 26 adult males with ASD and 26 age and IQ-matched typically developed males were presented with flash-beep (BF), point-light drummer, and face-voice (FV) displays with varying degrees of asynchrony and asked to make Synchrony Judgements (SJ) and Temporal Order Judgements (TOJ). Analysis of the data included fitting Gaussian functions as well as using an Independent Channels Model (ICM) to fit the data (Garcia-Perez & Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group had a wider TIW, but for TOJ no group effect was found. The ICM supported these results and model parameters indicated that the wider TIW for SJs in the ASD group was not due to sensory processing at the unisensory level, but rather due to decreased temporal resolution at a decisional level of combining sensory information. Furthermore, when performing TOJ, the ICM revealed a smaller Point of Subjective Simultaneity (PSS; closer to physical synchrony) in the ASD group than in the TD group. Finding that audiovisual temporal processing is different in ASD encouraged us to investigate the neural correlates of multisensory as well as unisensory processing using functional magnetic resonance imaging fMRI. Therefore, Chapter 4 investigated audiovisual, auditory and visual processing in ASD of simple BF displays and complex, social FV displays. During a block design experiment, we measured the BOLD signal when 13 adults with ASD and 13 typically developed (TD) age-sex- and IQ- matched adults were presented with audiovisual, audio and visual information of BF and FV displays. Our analyses revealed that processing of audiovisual as well as unisensory auditory and visual stimulus conditions in both the BF and FV displays was associated with reduced activation in ASD. Audiovisual, auditory and visual conditions of FV stimuli revealed reduced activation in ASD in regions of the frontal cortex, while BF stimuli revealed reduced activation the lingual gyri. The inferior parietal gyrus revealed an interaction between stimulus sensory condition of BF stimuli and group. Conjunction analyses revealed smaller regions of the superior temporal cortex (STC) in ASD to be audiovisual sensitive. Against our predictions, the STC did not reveal any activation differences, per se, between the two groups. However, a superior frontal area was shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in the ASD group. Overall this study indicated differences in brain activity for audiovisual, auditory and visual processing of social and non-social stimuli in individuals with ASD compared to TD individuals. These results contrast previous behavioural findings, suggesting different audiovisual integration, yet intact auditory and visual processing in ASD. Our behavioural findings revealed audiovisual temporal processing deficits in ASD during SJ tasks, therefore we investigated the neural correlates of SJ in ASD and TD controls. Similar to Chapter 4, we used fMRI in Chapter 5 to investigate audiovisual temporal processing in ASD in the same participants as recruited in Chapter 4. BOLD signals were measured while the ASD and TD participants were asked to make SJ on audiovisual displays of different levels of asynchrony: the participants’ PSS, audio leading visual information (audio first), visual leading audio information (visual first). Whereas no effect of group was found with BF displays, increased putamen activation was observed in ASD participants compared to TD participants when making SJs on FV displays. Investigating SJ on audiovisual displays in the bilateral superior temporal gyrus (STG), an area involved in audiovisual integration (see Chapter 4), we found no group differences or interaction between group and levels of audiovisual asynchrony. The investigation of different levels of asynchrony revealed a complex pattern of results indicating a network of areas more involved in processing PSS than audio first and visual first, as well as areas responding differently to audio first compared to video first. These activation differences between audio first and video first in different brain areas are constant with the view that audio leading and visual leading stimuli are processed differently.
Resumo:
The evolution of wireless communication systems leads to Dynamic Spectrum Allocation for Cognitive Radio, which requires reliable spectrum sensing techniques. Among the spectrum sensing methods proposed in the literature, those that exploit cyclostationary characteristics of radio signals are particularly suitable for communication environments with low signal-to-noise ratios, or with non-stationary noise. However, such methods have high computational complexity that directly raises the power consumption of devices which often have very stringent low-power requirements. We propose a strategy for cyclostationary spectrum sensing with reduced energy consumption. This strategy is based on the principle that p processors working at slower frequencies consume less power than a single processor for the same execution time. We devise a strict relation between the energy savings and common parallel system metrics. The results of simulations show that our strategy promises very significant savings in actual devices.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.
Resumo:
Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.
Resumo:
Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.
Resumo:
OBJECTIVE: The aim of this study was to translate the Structured Clinical Interview for Mood Spectrum into Brazilian Portuguese, measuring its reliability, validity, and defining scores for bipolar disorders. METHOD: Questionnaire was translated (into Brazilian Portuguese) and back-translated into English. Sample consisted of 47 subjects with bipolar disorder, 47 with major depressive disorder, 18 with schizophrenia and 22 controls. Inter-rater reliability was tested in 20 subjects with bipolar disorder and MDD. Internal consistency was measured using the Kuder Richardson formula. Forward stepwise discriminant analysis was performed. Scores were compared between groups; manic (M), depressive (D) and total (T) threshold scores were calculated through receiver operating characteristic (ROC) curves. RESULTS: Kuder Richardson coefficients were between 0.86 and 0.94. Intraclass correlation coefficient was 0.96 (CI 95 % 0.93-0.97). Subjects with bipolar disorder had higher M and T, and similar D scores, when compared to major depressive disorder (ANOVA, p < 0.001). The sub-domains that best discriminated unipolar and bipolar subjects were manic energy and manic mood. M had the best area under the curve (0.909), and values of M equal to or greater than 30 yielded 91.5% sensitivity and 74.5% specificity. CONCLUSION: Structured Clinical Interview for Mood Spectrum has good reliability and validity. Cut-off of 30 best differentiates subjects with bipolar disorder vs. unipolar depression. A cutoff score of 30 or higher in the mania sub-domain is appropriate to help make a distinction between subjects with bipolar disorder and those with unipolar depression.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.