966 resultados para Sib-pair Analysis
Resumo:
PURPOSE: To determine the effect of two pairs of echo times (TEs) for in-phase (IP) and opposed-phase (OP) 3.0-T magnetic resonance (MR) imaging on (a) quantitative analysis prospectively in a phantom study and (b) diagnostic accuracy retrospectively in a clinical study of adrenal tumors, with use of various reference standards in the clinical study. MATERIALS AND METHODS: A fat-saline phantom was used to perform IP and OP 3.0-T MR imaging for various fat fractions. The institutional review board approved this HIPAA-compliant study, with waiver of informed consent. Single-breath-hold IP and OP 3.0-T MR images in 21 patients (14 women, seven men; mean age, 63 years) with 23 adrenal tumors (16 adenomas, six metastases, one adrenocortical carcinoma) were reviewed. The MR protocol involved two acquisition schemes: In scheme A, the first OP echo (approximately 1.5-msec TE) and the second IP echo (approximately 4.9-msec TE) were acquired. In scheme B, the first IP echo (approximately 2.4-msec TE) and the third OP echo (approximately 5.8-msec TE) were acquired. Quantitative analysis was performed, and analysis of variance was used to test for differences between adenomas and nonadenomas. RESULTS: In the phantom study, scheme B did not enable discrimination among voxels that had small amounts of fat. In the clinical study, no overlap in signal intensity (SI) index values between adenomas and nonadenomas was seen (P < .05) with scheme A. However, with scheme B, no overlap in the adrenal gland SI-to-liver SI ratio between adenomas and nonadenomas was seen (P < .05). With scheme B, no overlap in adrenal gland SI index-to-liver SI index ratio between adenomas and nonadenomas was seen (P < .05). CONCLUSION: This initial experience indicates SI index is the most reliable parameter for characterization of adrenal tumors with 3.0-T MR imaging when obtaining OP echo before IP echo. When acquiring IP echo before OP echo, however, nonadenomas can be mistaken as adenomas with use of the SI index value.
Resumo:
Ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) is presented as a new, superior method for the analysis of RNA. IP RP HPLC provides a fast and reliable alternative to classical methods of RNA analysis, including separation of different RNA species, quantification and purification. RNA is stable under the analysis conditions used; degradation of RNA during the analyses was not observed. The versatility of IP RP HPLC for RNA analysis is demonstrated. Components of an RNA ladder, ranging in size from 155 to 1770 nt, were resolved. RNA transcripts of up to 5219 nt were analyzed, their integrity determined and they were quantified and purified. Purification of mRNA from total RNA is described, separating mouse rRNA from poly(A)+ mRNA. IP RP HPLC is also suitable for the separation and purification of DIG-labeled from unlabeled RNA. RNA purified by IP RP HPLC exhibits improved stability.
Resumo:
Dragon is a word-based stream cipher. It was submitted to the eSTREAM project in 2005 and has advanced to Phase 3 of the software profile. This paper discusses the Dragon cipher from three perspectives: design, security analysis and implementation. The design of the cipher incorporates a single word-based non-linear feedback shift register and a non-linear filter function with memory. This state is initialized with 128- or 256-bit key-IV pairs. Each clock of the stream cipher produces 64 bits of keystream, using simple operations on 32-bit words. This provides the cipher with a high degree of efficiency in a wide variety of environments, making it highly competitive relative to other symmetric ciphers. The components of Dragon were designed to resist all known attacks. Although the design has been open to public scrutiny for several years, the only published attacks to date are distinguishing attacks which require keystream lengths greatly exceeding the stated 264 bit maximum permitted keystream length for a single key-IV pair.
Resumo:
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is expected to rise. However, due to low collision frequencies it is difficult to analyze such risk in a sound statistical manner. This study aims at examining the occurrence of traffic conflicts in order to understand the characteristics of vessels involved in navigational hazards. A binomial logit model was employed to evaluate the association of vessel attributes and the kinematic conditions with conflict severity levels. Results show a positive association for vessels of small gross tonnage, overall vessel length, vessel height and draft with conflict risk. Conflicts involving a pair of dynamic vessels sailing at low speeds also have similar effects.
Resumo:
Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
We define a pair-correlation function that can be used to characterize spatiotemporal patterning in experimental images and snapshots from discrete simulations. Unlike previous pair-correlation functions, the pair-correlation functions developed here depend on the location and size of objects. The pair-correlation function can be used to indicate complete spatial randomness, aggregation or segregation over a range of length scales, and quantifies spatial structures such as the shape, size and distribution of clusters. Comparing pair-correlation data for various experimental and simulation images illustrates their potential use as a summary statistic for calibrating discrete models of various physical processes.
Resumo:
This retrospective review examines healing in different sites on a porcine burn model; 24 pairs of burns on 18 pigs from other animal trials were selected for analysis. Each pair of burns was located on the either the cranial or the caudal part of the thoracic ribs region, on the same side of the animal. The burns were 40-50 cm(2) in size and of uniform deep-dermal partial thickness. Caudal burns healed significantly better than cranial burns, demonstrated by earlier closure of wounds, less scar formation and better cosmesis. To our knowledge, this is the first detailed study reporting that burn healing is affected by location on a porcine burn model. We recommend that similar symmetrical burns should be used for future comparative assessments of burn healing.
Resumo:
Many cell types form clumps or aggregates when cultured in vitro through a variety of mechanisms including rapid cell proliferation, chemotaxis, or direct cell-to-cell contact. In this paper we develop an agent-based model to explore the formation of aggregates in cultures where cells are initially distributed uniformly, at random, on a two-dimensional substrate. Our model includes unbiased random cell motion, together with two mechanisms which can produce cell aggregates: (i) rapid cell proliferation, and (ii) a biased cell motility mechanism where cells can sense other cells within a finite range, and will tend to move towards areas with higher numbers of cells. We then introduce a pair-correlation function which allows us to quantify aspects of the spatial patterns produced by our agent-based model. In particular, these pair-correlation functions are able to detect differences between domains populated uniformly at random (i.e. at the exclusion complete spatial randomness (ECSR) state) and those where the proliferation and biased motion rules have been employed - even when such differences are not obvious to the naked eye. The pair-correlation function can also detect the emergence of a characteristic inter-aggregate distance which occurs when the biased motion mechanism is dominant, and is not observed when cell proliferation is the main mechanism of aggregate formation. This suggests that applying the pair-correlation function to experimental images of cell aggregates may provide information about the mechanism associated with observed aggregates. As a proof of concept, we perform such analysis for images of cancer cell aggregates, which are known to be associated with rapid proliferation. The results of our analysis are consistent with the predictions of the proliferation-based simulations, which supports the potential usefulness of pair correlation functions for providing insight into the mechanisms of aggregate formation.
Resumo:
We investigate the utility to computational Bayesian analyses of a particular family of recursive marginal likelihood estimators characterized by the (equivalent) algorithms known as "biased sampling" or "reverse logistic regression" in the statistics literature and "the density of states" in physics. Through a pair of numerical examples (including mixture modeling of the well-known galaxy dataset) we highlight the remarkable diversity of sampling schemes amenable to such recursive normalization, as well as the notable efficiency of the resulting pseudo-mixture distributions for gauging prior-sensitivity in the Bayesian model selection context. Our key theoretical contributions are to introduce a novel heuristic ("thermodynamic integration via importance sampling") for qualifying the role of the bridging sequence in this procedure, and to reveal various connections between these recursive estimators and the nested sampling technique.
Resumo:
The genomics era provides opportunities to assess the genetic overlap across phenotypes at the measured genotype level; however, current approaches require individual-level genome-wide association (GWA) single nucleotide polymorphism (SNP) genotype data in one or both of a pair of GWA samples. To facilitate the discovery of pleiotropic effects and examine genetic overlap across two phenotypes, I have developed a user-friendly web-based application called SECA to perform SNP effect concordance analysis using GWA summary results. The method is validated using publicly available summary data from the Psychiatric Genomics Consortium.
Resumo:
The oily bittering Acheilognathus koreensis is a freshwater species that is endemic to Korea and is experiencing severe declines in natural populations as a result of habitat fragmentation and water pollution. For the conservation and restoration of this species, it is necessary to assess its genetic diversity at the population level. We developed 13 polymorphic microsatellite loci that were used to analyze the genetic diversity of two populations collected from the Kum River and the Tamjin River in Korea. All loci exhibited Mendelian inheritance patterns when examined in controlled crosses. Both populations revealed high levels of variability, with the number of alleles ranging from 3 to 20 and observed and expected heterozygosities ranging from 0.500 to 0.969 and from 0.529 to 0.938, respectively. None of the loci showed significant deviation from Hardy–Weinberg equilibrium, and one pair of loci showed significant linkage disequilibrium after Bonferroni correction. Pairwise F ST and genetic distance estimation showed significant differences between two populations. These results suggest that the microsatellites developed herein can be used to study the genetic diversity, population structure and conservation measure of A. koreensis.
Resumo:
Introduction and Aims Wastewater analysis provides a non-intrusive way of measuring drug use within a population. We used this approach to determine daily use of conventional illicit drugs [cannabis, cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA)] and emerging illicit psychostimulants (benzylpiperazine, mephedrone and methylone) in two consecutive years (2010 and 2011) at an annual music festival. Design and Methods Daily composite wastewater samples, representative of the festival, were collected from the on-site wastewater treatment plant and analysed for drug metabolites. Data over 2 years were compared using Wilcoxon matched-pair test. Data from 2010 festival were compared with data collected at the same time from a nearby urban community using equivalent methods. Results Conventional illicit drugs were detected in all samples whereas emerging illicit psychostimulants were found only on specific days. The estimated per capita consumption of MDMA, cocaine and cannabis was similar between the two festival years. Statistically significant (P < 0.05; Z = −2.0–2.2) decreases were observed in use of methamphetamine and one emerging illicit psychostimulant (benzyl piperazine). Only consumption of MDMA was elevated at the festival compared with the nearby urban community. Discussion and Conclusions Rates of substance use at this festival remained relatively consistent over two monitoring years. Compared with the urban community, drug use among festival goers was only elevated for MDMA, confirming its popularity in music settings. Our study demonstrated that wastewater analysis can objectively capture changes in substance use at a music setting without raising major ethical issues. It would potentially allow effective assessments of drug prevention strategies in such settings in the future.
Resumo:
Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.