906 resultados para Shop stewards.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimise the makespan, provided that preemption is not allowed and the interstage transportation times are involved. In general, this problem is known to be NP-hard. We present a linear time algorithm that finds an optimal schedule if no transportation time exceeds the smallest of the processing times. We also describe an algorithm that creates a heuristic solution to the problem with job-independent transportation times. Our algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are equal.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
We study the special case of the m machine flow shop problem in which the processing time of each operation of job j is equal to pj; this variant of the flow shop problem is known as the proportionate flow shop problem. We show that for any number of machines and for any regular performance criterion we can restrict our search for an optimal schedule to permutation schedules. Moreover, we show that the problem of minimizing total weighted completion time is solvable in O(n2) time. © 1998 John Wiley & Sons, Ltd.
Resumo:
This paper considers a special class of flow-shop problems, known as the proportionate flow shop. In such a shop, each job flows through the machines in the same order and has equal processing times on the machines. The processing times of different jobs may be different. It is assumed that all operations of a job may be compressed by the same amount which will incur an additional cost. The objective is to minimize the makespan of the schedule together with a compression cost function which is non-decreasing with respect to the amount of compression. For a bicriterion problem of minimizing the makespan and a linear cost function, an O(n log n) algorithm is developed to construct the Pareto optimal set. For a single criterion problem, an O(n2) algorithm is developed to minimize the sum of the makespan and compression cost. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.
Resumo:
We survey recent results on the computational complexity of mixed shop scheduling problems. In a mixed shop, some jobs have fixed machine orders (as in the job shop), while the operations of the other jobs may be processed in arbitrary order (as in the open shop). The main attention is devoted to establishing the boundary between polynomially solvable and NP-hard problems. When the number of operations per job is unlimited, we focus on problems with a fixed number of jobs.
Resumo:
We study a two-machine open shop scheduling problem, in which one machine is not available for processing during a given time interval. The objective is to minimize the makespan. We show that the problem is NP-hard and present an approximation algorithm with a worst-case ratio of 4/3.
Resumo:
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.
Resumo:
We consider the problem of scheduling independent jobs on two machines in an open shop, a job shop and a flow shop environment. Both machines are batching machines, which means that several operations can be combined into a batch and processed simultaneously on a machine. The batch processing time is the maximum processing time of operations in the batch, and all operations in a batch complete at the same time. Such a situation may occur, for instance, during the final testing stage of circuit board manufacturing, where burn-in operations are performed in ovens. We consider cases in which there is no restriction on the size of a batch on a machine, and in which a machine can process only a bounded number of operations in one batch. For most of the possible combinations of restrictions, we establish the complexity status of the problem.
Resumo:
This paper considers the problem of sequencing n jobs in a three-machine shop with the objective of minimising the maximum completion time. The shop consists of three machines, M1,M2 and M_{3}. A job is first processed on M1 and then is assigned either the route (M2,M_{3}) or the route (M_{3},M2). Thus, for our model the processing route is given by a partial order of machines, as opposed to the linear order of machines for a job shop, or to an arbitrary sequence of machines for an open shop. The main result is on O(nlog n) time heuristic, which generates a schedule with the makespan that is at most 5/3 times the optimum value.
Resumo:
We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.
Resumo:
This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.
Resumo:
The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.
Resumo:
In this paper we study the two-machine flow shop and open shop problems to minimize the makespan with a single interstage transporter that may carry any number of jobs between the machines at a time. For each of these problems we present a best possible approximation algorithm within a class of schedules with at most two shipments. As a by-product of this research, for the problem of minimizing the makespan on parallel identical machines we analyze the ratio of the makespan for a non-preemptive schedule over the makespan of a preemptive schedule.