992 resultados para Ships -- Ontario -- Niagara Peninsula -- History.
Resumo:
Editorial (1 typed page) which was printed in the Niagara Falls (Ontario) Evening Review on May 20, 1937, entitled “Captain Creighton Probably called it Clifton First”. This is printed on Lundy’s Lane Historical Society Letterhead by Mrs. Stanley Tolan. The article mentions “Samuel DeVeaux who created a “Niagara Falls Tourist Guide” which was published in 1839, April 24, 1948.
Resumo:
According to legend, the Burning Springs were discovered by early natives in the Niagara Peninsula. Bridgewater Mills was built on the site of the spring. During the excavation of the factory; workmen uncovered the spring. Samuel Street and Thomas Clark recognized the potential of this as a tourist attraction so they built a wooden shelter over the spring. The spring was covered with a barrel with a pipe protruding from it. This became the first tourist attraction at Niagara. The Cave of the Winds was a cavern located behind the Bridal Veil Fall. It was originally named the Aeolus Cave. In 1920, a sudden rock fall from the ceiling killed 3 tourists. The cave was destroyed in 1955 as it was deemed dangerous. The captain of the Maid of the Mist was usually a farmer who owned the land where the ship docked. In 1846, the first steam powered Maid of the Mist was launched. By 1848, the first suspension bridge was built over the gorge and the main purpose of the Maid of the Mist was no longer to carry people who needed to travel, but now the focus was on people who wanted to view the Falls at close range. Source: http://www.niagarafrontier.com/burningsprings.html http://www.niagarafrontier.com/winds.html http://reservationsystems.com/niagara_daredevils/maid_of_the_mist.html
Resumo:
The intention of the Niagara Parks Commission to undertake restorations of Fort George, Fort Mississauga and Fort Erie has inspired this survey. The aim has not been to create an historical narrative - so many already exist - but rather to present an accurate description of the original appearance, structure and design of each of the Niagara Forts. This it is hoped may be of some practical assistance to those in charge of the actual work of restoration. In the case of Fort Mississauga which was maintained as a military post until 1857, vary complete information has been available. Fort George and Fort Erie were abandoned for military purposes after the War of 1812 and fewer plans and contemporary accounts have survived. While the work of research, involving the collection of every possible plan of the works and every drawing of their appearance as well as the piecing together of material, has been more difficult in the case of the latter forts, it is felt that the essential information has been secured. The use of a number of military terms in the description of the fortifications has been unavoidable and a glossary of these is included on page 66. The list of plans and illustrations is as complete as possible.
Resumo:
The intention of the Niagara Parks Commission to undertake restorations of Fort George, Fort Mississauga and Fort Erie has inspired this survey. The aim has not been to create an historical narrative - so many already exist - but rather to present an accurate description of the original appearance, structure and design of each of the Niagara Forts. This it is hoped may be of some practical assistance to those in charge of the actual work of restoration. In the case of Fort Mississauga which was maintained as a military post until 1857, vary complete information has been available. Fort George and Fort Erie were abandoned for military purposes after the War of 1812 and fewer plans and contemporary accounts have survived. While the work of research, involving the collection of every possible plan of the works and every drawing of their appearance as well as the piecing together of material, has been more difficult in the case of the latter forts, it is felt that the essential information has been secured. The use of a number of military terms in the description of the fortifications has been unavoidable and a glossary of these is included on page 66. The list of plans and illustrations is as complete as possible.
Resumo:
Several irrigation treatments were evaluated on Sovereign Coronation table grapes at two sites over a 3-year period in the cool humid Niagara Peninsula of Ontario. Trials were conducted in the Hippie (Beamsville, ON) and the Lambert Vineyards (Niagara-on-the-Lake, ON) in 2003 to 2005 with the objective of assessing the usefulness of the modified Penman-Monteith equation to accurately schedule vine irrigation needs. Data (relative humidity, windspeed, solar radiation, and temperature) required to precisely calculate evapotranspiration (ETq) were downloaded from the Ontario Weather Network. One of two ETq values (either 100 or 150%) were used in combination with one of two crop coefficients (Kc; either fixed at 0.75 or 0.2 to 0.8 based upon increasing canopy volume) to calculate the amount of irrigation water required. Five irrigation treatments were: un irrigated control; (lOOET) X Kc =0.75; 150ET X Kc =0.75; lOOET X Kc =0.2-0.8; 150ET X Kc =0.2-0.8. Transpiration, water potential (v|/), and soil moisture data were collected each growing seasons. Yield component data was collected and berries from each treatment were analyzed for soluble solids (Brix), pH, titratable acidity (TA), anthocyanins, methyl anthranilate (MA), and total volatile esters (TVE). Irrigation showed a substantial positive effect on transpiration rate and soil moisture; the control treatment showed consistently lower transpiration and soil moisture over the 3 seasons. Transpiration appeared accurately reflect Sovereign Coronation grapevines water status. Soil moisture also accurately reflected level of irrigation. Moreover, irrigation showed impact of leaf \|/, which was more negative throughout the 3 seasons for vines that were not irrigated. Irrigation had a substantial positive effect on yield (kg/vine) and its various components (clusters/vine, cluster weight, and berries/cluster) in 2003 and 2005. Berry weights were higher under the irrigated treatments at both sites. Berry weight consistently appeared to be the main factor leading to these increased yields, as inconsistent responses were noted for some yield variables. Soluble solids was highest under the ET150 and ET100 treatments both with Kc at 0.75. Both pH and TA were highest under control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. Anthocyanins and phenols were highest under the control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. MA and TVE were highest under the ET150 treatments. Vine and soil water status measurements (soil moisture, leaf \|/, and transpiration) confirmed that irrigation was required for the summers of 2003 and 2005 due to dry weather in those years. They also partially supported the hypothesis that the Penman-Monteith equation is useful for calculating vineyard water needs. Both ET treatments gave clear evidence that irrigation could be effective in reducing water stress and for improving vine performance, yield and fruit composition. Use of properly scheduled irrigation was beneficial for Sovereign Coronation table grapes in the Niagara region. Findings herein should give growers some strong guidehnes on when, how and how much to irrigate their vineyards.
Resumo:
Cherts from the Middle Devonian Onondaga Formation of the Niagara Peninsula in Southern Ontario and Western New York State can now be distinguished from those of the Early Devonian Bois Blanc Formation of the same area based on differences in petrology, acritarchs, spores, and "Preservation Ratio" values. The finely crystalline, carbonate sediments of the Bois Blanc Formation were deposited under shallow, low energy conditions characterised by the acritarchs Leiofusa bacillum and L. minuta and a high relative abundance of the spore, Apiculiretusispora minor. The medio crystalline and bioclastic carbonate sediments of the Onondaga Formation were deposited under shallow, high energy conditions except for the finely crystalline lagoonal sediments of the Clarence Member which is characterised by the acritarchs Leiofusa navicula, L. sp. B, and L. tomaculata . The author has subdivided and correlated the Clarence Member of the Onondaga Formation using the "Preservation Ratio" values derived from the palynomorphs contained in the cherts. Clarence Member cherts were used by the Archaic people of the Niagara Peninsula for chipped-stone tools. The source area for the chert is considered to be the cobble beach deposits along the north shore of Lake Erie from Port Maitland to Nanticoke
Resumo:
The gypsy moth, Lymantria dispar, a major defoliator of broad leaf trees, was accidentally introduced into North America in 1869. Much interest has been generated regarding the potential of using natural pathogens for biological control of this insect. One of these pathogens, a highly specific fungus, Entomophaga maimaiga, was accredited with causing major epizootics in populations of gypsy moth across the north-eastern United States in 1989 and 1990 and is thought to be spreading northwards into Canada. This study examined gypsy moth population densities in the Niagara Region. The fungus, .E.. maimaiga, was artificially introduced into one site and the resulting mortality in host populations was noted over two years. The relationship between fungal mortality, host population density and occurrence of another pathogen, the nuclear polyhedrosis virus (NPV), was assessed. Gypsy moth population density was assessed by counting egg masses in 0.01 hectare (ha) study plots in six areas, namely Louth, Queenston, Niagara-on-the-Lake, Shorthills Provincial Park, Chippawa Creek and Willoughby Marsh. High variability in density was seen among sites. Willoughby Marsh and Chippawa Creek, the sites with the greatest variability, were selected for more intensive study. The pathogenicity of E. maimaiga was established in laboratory trials. Fungal-infected gypsy moth larvae were then released into experimental plots of varying host density in Willoughby Marsh in 1992. These larvae served as the inoculum to infect field larvae. Other larvae were injected with culture medium only and released into control plots also of varying host density. Later, field larvae were collected and assessed for the presence of .E.. maimaiga and NPV. A greater proportion of larvae were infected from experimental plots than from control plots indicating that the experimental augmentation had been successful. There was no relationship between host density and the proportion of infected larvae in either experimental or control plots. In 1992, 86% of larvae were positive for NPV. Presence and intensity of NPV infection was independent of fungal presence, plot type or interaction of these two factors. Sampling was carried out in the summer of 1993, the year after the introduction, to evaluate the persistence of the pathogen in the environment. Almost 50% of all larvae were infected with the fungus. There was no difference between control and experimental plots. Data collected from Willoughby Marsh indicated that there was no correlation between the proportion of larvae infected with the fungus and host population density in either experimental or control plots. About 10% of larvae collected from a nearby site, Chippawa Creek, were also positive for .E.. maimaiga suggesting that low levels of .E.. maimaiga probably occurred naturally in the area. In 1993, 9.6% of larvae were positive for NPV. Again, presence or absence of NPV infection was independent of fungal presence plot type or interaction of these two factors. In conclusion, gypsy moth population densities were highly variable between and within sites in the Niagara Region. The introduction of the pathogenic fungus, .E.. maimaiga, into Willoughby Marsh in 1992 was successful and the fungus was again evident in 1993. There was no evidence for existence of a relationship between fungal mortality and gypsy moth density or occurrence of NPV. The results from this study are discussed with respect to the use of .E.. maimaiga in gypsy moth management programs.
Resumo:
Ontario Editorial Bureau (O.E.B.)
Resumo:
Background. West Nile Virus (WNV), a mosquito-borne flavivirus, is one of an increasing number of infectious diseases that have been emerging or re-emerging in the last two decades. Since the arrival ofWNV to Canada to present date, the Niagara Region has only reported 30 clinical cases, a small number compared to the hundreds reported in other regions of similar conditions. Moreover, the last reported human case in Niagara was in 2006. As it has been demonstrated that the majority of WNV infections are asymptomatic, the question remains whether the lack of clinical cases in Niagara truly reflects the lack of transmission to humans or if infections are still occurring but are mostly asymptomatic. Objectives. The general objective of this study was to establish whether or not active WNV transmission could be detected in a human population residing in Niagara for the 2007 transmission season. To fullfil this objective, a cross-sectional seroprevalence study was designed to investigate for the presence of anti-WNV antibodies in a sample of Mexican migrant agricultural workers employed in farms registered with the Seasonal Agricultural Workers Program (SAWP). Due to the Mexican origin of the study participants, three specific research objectives were proposed: a) determine the seroprevalence ofanti-WNV antibodies as well as anti-Dengue virus antibodies (a closely related virus prevalent in Mexico and likely to confound WNV serology); b) analyze risk factors associated with WNV and Dengue virus seropositivity; and c) assess the awareness of study participants about WNV infection as well as their understanding of the mode of transmission and clinical importance of the infection. Methodology: After obtaining ethics clearance from Brock University, farms were visited and workers invited to participate. Due to time constraints, only a small number of farms were enrolled with a resulting convenience and non-randomized study sample. Workers' demographic and epidemiological data were collected using a standardized questionnaire and blood samples were drawn to determine serum anti-WNV and anti- Dengue antibodies with a commercial ELISA. All positive samples were sent to the National Microbiology Laboratory in Winnipeg, Manitoba for confirmation with the Plaque Reduction Neutralization Test (PRNT). Data was analyzed with Stata 10.0. Antibody determinations were reported as seroprevalence proportions for both WNV and Dengue. Logistic regression was used to analyze risk factors that may be associated with seropositivity and awareness was reported as a proportion of the number of individuals possessing awareness over the total number of participants. Results and Discussion. In total 92 participants working in 5 farms completed the study. Using the commercial ELISA, seropositivity was as follows: 2.2% for WNV IgM, 20.7% for WNV IgG, and 17.1 % for Dengue IgG. Possible cross-reactivity was demonstrated in 15/20 (75.0%) samples that were positive for both WNV IgG and Dengue IgG. Confirmatory testing with the PRNT demonstrated that none of the WNV ELISA positive samples had antibodies to WNV but 13 samples tested positive for anti-Dengue antibodies (14.1 % Dengue sereoprevalence). The findings showed that the ELISA performance was very poor for assessing anti-WNV antibodies in individuals previously exposed to Dengue virus. However, the ELISA had better sensitivity and specificity for assessing anti-Dengue antibodies. Whereas statistical analysis could not be done for WNV seropositivity, as all samples were PRNT negative, logistic regression demonstrated several risk factors for Dengue exposure_ The first year coming to Canada appeared to be significantly associated with increased exposure to Dengue while lower socio-economic housing and the presence of a water basin in the yard in Mexico appeared to be significantly associated with a decreased exposure to Dengue_ These seemingly contradictory results illustrate that in mobile populations such as migrant workers, risk factors for exposure to Dengue are not easily identified and more research is needed. Assessing the awareness of WNV and its clinical importance showed that only 23% of participants had some knowledge of WNV, of which 76% knew that the infection was mosquito-borne and 47% recognized fever as a symptom. The identified lack of understanding and awareness was not surprising since WNV is not a visible disease in Mexico. Since WNV persists in an enzootic cycle in Niagara and the occurrence of future outbreaks is unpredictable, the agricultural workers remain at risk for transmission. Therefore it important they receive sufficient health education regarding WNV before leaving Mexico and during their stay in Canada. Conclusions. Human transmission of WNV could not be proven among the study participants even when due to their occupation they are at high risk for mosquito bites. The limitations of the study sample do not permit generalizable conclusions, however, the study findings are consistent with the absence of clinical cases in the Niagara Region, so it is likely that human transmission is indeed neglible or absent. As evidenced by our WNV serology results, PRNT must be utilized as a confirmatory test since false positivity occurs frequently. This is especially true when previous exposure to Dengue virus is likely.
Resumo:
Gideon Sundback was born in Stockholm, Sweden in 1880. He was educated as an engineer and settled in the United States in 1905. While working for the Universal Fastener Company, New Jersey in 1913 he developed and patented a “separable fastener”, which improved on an earlier version of what today is known as the zipper. He later moved his family to Meadville, Pennsylvania and sought a Canadian location for the production of his new invention. He settled on St. Catharines as it was an easy commute from his Pennsylvania home and opened The Lightning Fastener Company on Niagara Street. Sundback died on June 21, 1954 and is interred in Meadville, Pennsylvania. The plant continued to operate, but with increased foreign competition the manufacture of the zipper declined. The plant closed in 1981. Source: The St. Catharines Standard, July 3, 2004 Harold Fox was a noted lawyer, academic, businessman, author and a leading authority on intellectual property. He was engaged by Gideon Sunback and the Lightening Fastening Company to combat patent infringements by Colonial Fastener in the 1930s. The relationship continued when Fox was asked to become the managing director of the company, which he did until 1949. Fox lived in St. Catharines at his home “Foxcroft” until his death in 1969. Source: http://thefoxfund.com/harold.htm (November 2, 2009)
Resumo:
Hugh Alexander, b. 1780 arrived in Niagara shortly after his birth. He attended school and later apprenticed as a clerk. In 1797 he was granted 200 acres of land in Bertie township and became a merchant and trader in Fort Erie. He was the owner of a sailing vessel, the Chippawa, which he used to transport goods in the area. The ship was lost and/or confiscated as a result of War of 1812 skirmishes on Lake Erie. By 1812 Hugh Alexander was in business together with his brother Ephraim. The Alexander’s storehouse, store and house were burned by the British military when they abandoned Fort Erie ahead of the invading American military in late May 1813. At the time of the burning, Hugh Alexander was engaged as a Lieutenant with the 3rd Lincoln Militia. Prior to this Hugh Alexander had established a second mercantile in Stamford, opposite the green. Misfortune was to strike at this location as well when the British military abandoned the whole of the Niagara area to the invading American forces and the Stamford location was looted. After the end of the hostilities Alexander went on to rebuild his storehouse in Fort Erie and to re-establish his store in Stamford. Hugh Alexander died on November 2, 1817 and is buried in the Stamford Presbyterian Cemetery. Source: George A. Seibel, The Niagara Portage Road: 200 Years 1790-1990. Niagara Falls: City of Niagara Falls, 1990, p. 259-262.
Resumo:
Margaret was an only child who grew up on a farm just east of Cayuga, Ontario. After high school, Margaret attended Hamilton Teacher’s College and took a position with Grantham Public School Board and taught at Power Glen school. Margaret was married in 1962 and had 2 children, a daughter and a son in 1963 and 1964, respectively. Margaret left her teaching job to raise her children. Margaret was very creative and artistic and during this time, focused on these talents, which included painting, graphic arts and sewing. Margaret was also an accomplished pianist. In her 40’s, Margaret enrolled at Brock University and in 1989 obtained a Honors Bachelor of Arts degree with First-Class Honors in Sociology. In partial fulfillment of her Honors B.A. she completed her thesis that is entitled ; The State and Liberal Feminism: The Ontario Government’s “Business Ownership For Women Program”. While living in St. Catharines, Margaret attended York University and graduated with a Master of Arts in Sociology in 1992 where her studies focused on women’s issues. Margaret received a scholarship from York University and was a teaching assistant. Margaret stayed on at York University and completed her academic requirements for a Doctorate degree in Sociology. Her dissertation was on self employed women in St. Catharines at the beginning of WWII -- not the” Rosie the Riveters” who took over jobs formerly held by men who had to go off to fight World War II, but women who ran their own businesses when that was still unusual. Margaret completed the research for her thesis but did not complete her written thesis as she made a difficult decision to put her academic work on hold in the mid-1990’s and she returned to her love for the arts, although she always remained a voracious reader and interested in women’s issues. In the last decade of her life, she took up quilting with a passion, which she referred to as fabric arts. Margaret loved colour and being non-traditional. Margaret had been a quilting instructor at the Flemington College for Fine Arts in Haliburton. In 1997, Margaret founded Project Smile in the St. Catharines region, a non-profit group who make quilts for children with cancer. Margaret was also the President of the Niagara Heritage Quilters’ Guild in 2006-2007 and was very involved with the Local Council of Women.
Resumo:
The first Rotary Club was created in February 1905, by Chicago lawyer Paul P. Harris. Harris envisioned a club which would bring members of the business community closer together. As his vision grew more members were acquired. In order to accommodate everyone, meetings were held at each of the member’s place of business; hence the name Rotary Club was adopted. A wagon wheel was chosen as an appropriate symbol to denote the club; which today has become the cogwheel. By the close of its first year the club had thirty members. Slowly Rotary Clubs began emerging across the country and by 1910 they had become International by moving North to Canada. By 1921 Rotary representation was present in every Continent and in 1922 the name Rotary International had been approved. The Rotary Club of St. Catharines came into existence on May 19, 1921 under the Charter President Canon Bill Broughall. The Club’s beginnings were humble with only twenty-five members; however, by their seventy-fifth anniversary the club had grown to one hundred and forty-four. The Rotary Club of St. Catharines is a non-profit charity, prescribing to the motto Service above Self. This motto is demonstrated through the Clubs numerous contributions to society both locally and internationally. The Club raises funds, supports exchange programs, and participates in community service work. Some of the organizations which have benefited from the Clubs donations; include, Easter Seals, the Niagara Peninsula Children’s Centre, and the Youth Exchange Program.
Resumo:
Serving the Niagara and surrounding areas for over 120 years, Walker Industries has made its impact not only commercially, but also culturally. Beginning in 1875 with the erection of a stone sawing mill on a property John Walker purchased from the Welland Canal Loan Company. One of the first projects Walker cut stone for was the Merritton Town Hall. In 1882 the business expanded to include Walkers children, changing the name to Walker & Sons. Eventually in 1887 the two eldest sons took control of the business operation and their partnership changed the company’s name to Walker Brothers, the same year the company began operating its first quarry. The quarry was conveniently located alongside the 3rd Welland canal, offering easy access to Toronto and Hamilton. It was also close to the railway system which allowed immediate access to Thorold and Niagara Falls and later access to parts of Ontario and Quebec. The quarry supplied stone to build numerous halls and armouries across Ontario. A use was also found for the ‘waste products’ of cutting the limestone. Leftover stone chips were sent to paper mills, where stone was needed as part of the sulphite pulp process for making paper. Beginning to supply the Ontario Paper Company with stone in 1913, meant not only long, hard, work, but also more profit for the company. Before mechanization, most of the loading and unloading of the stone was done by hand, taking 19 man-hours to load an 18 yard railway car. Mechanization followed in 1947 when the plant became fully mechanized making the work easier and increasing production rates. In 1957 the company moved from its original location and opened the St. Catharines Crushed Stone Plant.
Resumo:
This archive contains materials relating to the Ontario Medical Association. The bulk of the materials are correspondence. A complete administrative history of the association is available from, The first 100 years : a history of the Ontario Medical Association / Glenn Sawyer, Toronto : The Association, 1980? (R15 O58 S39 1980).