735 resultados para Shellfish


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of azaspiracid (AZA) toxins in contaminated shellfish has been the focus of much research. The present study investigated the binding properties of these toxins in mussels of the species Mytilus edulis. The work involved extraction of proteins and AZAs from contaminated mussel hepatopancreas and examination of the extracts by isoelectric focusing (IEF), size exclusion chromatography (SEC) and sodium docecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE). Liquid chromatography coupled with tandem mass spectrometry analysis (LC–MS/MS) was also performed in this study to identify AZAs. Blank mussels were subjected to the same purification and analytical procedures.

AZAs were found to be weakly bound to a protein with a molecular weight of 45 kDa, in samples of contaminated mussels. This protein, which was abundant in contaminated mussels, was also present in blank mussels, albeit at much lower concentrations. It was further noted that a 22 kDa protein was also present only in contaminated mussel samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A research element of the European Union (EU) sixth Framework project BioCop focused on the development of a surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish as an alternative to the increasingly ethically unacceptable mouse bioassay. A biosensor assay was developed using both a saxitoxin binding protein and chip surface in tandem with a highly efficient simple extraction procedure. The present report describes the single laboratory validation of this immunological screening method, for this complex group of toxins with differing toxicities, according to the European Decision 2002/657/EC in conjunction with IUPAC and AOAC single laboratory validation guidelines. The different performance characteristics (detection capability CC beta, specificity/selectivity, repeatability, reproducibility, stability, and applicability) were determined in relation to the EU regulatory limit of 800 mu g of saxitoxin equivalents (STX eq) per kg of shellfish meat. The detection capability CC beta was calculated to be 120 mu g/kg. Intra-assay repeatability was found to be between 2.5 and 12.3% and interassay reproducibility was between 6.1 and 15.2% for different shellfish matrices. Natural samples were also evaluated and the resultant data displayed overall agreements of 96 and 92% with that of the existing AOAC approved methods of mouse bioassay (MBA) and high performance liquid chromatography (HPLC), respectively.