980 resultados para Severe malaria


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1 alpha previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1 alpha-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1 alpha antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A malária é uma doença infecciosa que atinge aproximadamente 40% da população mundial em mais de 100 países e consiste em um grave problema de saúde pública. As citocinas são moléculas importantes na resposta imune contra a malária e atuam através do estímulo ou inibição da ativação, proliferação e/ ou diferenciação de células, além de regularem a secreção de anticorpos e de outras citocinas. Nesse trabalho investigamos três polimorfismos de nucleotídeo único (SNP) que podem influenciar em uma maior ou menor síntese das citocinas TNF-a e IFN-g. Em relação à malária, os polimorfismos já foram associados com a malária grave, malária cerebral e anemia grave e também com outras doenças infecciosas, auto-imunes e com o câncer. Foram incluídos no estudo oitenta e um (81) pacientes com malária por Plasmodium vivax (primeira infecção) e cento e trinta (130) indivíduos sadios, ambos da população de Belém – PA. As freqüências genotípicas e alélicas foram pesquisadas através da técnica de discriminação alélica por PCR em tempo real e os resultados foram comparados entre os dois grupos. Parâmetros clínicos foram utilizados para tentar associar uma maior gravidade das manifestações da malária e a presença dos polimorfismos entre os pacientes. As freqüências foram semelhantes entre os dois grupos estudados. O alelo TNF-238*A não mostrou relação com nenhum dos parâmetros clínicos enquanto o alelo TNF-376*A estava relacionado com menores níveis plasmáticos de TNF-a e com uma menor intensidade dos sintomas. Os pacientes portadores do alelo IFN+874*A apresentaram menor intensidade da parasitemia. Assim os resultados obtidos não indicam associação dos polimorfismos com a ocorrência da malária na população estudada, mas com alguns dos parâmetros clínicos investigados, e podem auxiliar futuros estudos para tentar esclarecer como as mutações nos genes de citocinas podem influenciar na ocorrência e na evolução clínica da malária e de outras doenças infecciosas e parasitárias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malária é uma das mais incidentes doenças infecciosas do mundo. Na Amazônia existem muitos casos de malária causados principalmente por duas espécies de protozoários, o Plasmodium vivax e o Plasmodium falciparum, sendo este último responsável pela maioria dos casos de malária grave, que geralmente levam a morte devido ao acometimento de múltiplos órgãos, como o cérebro. Um dos mediadores químicos amplamente estudados nessa patogênese é o Óxido Nítrico (NO), o qual apresenta papel controverso. Atualmente duas hipóteses principais são apontadas como potencializadoras na patogênese. Uma, que a MC é causa da superprodução de NO, produzido pela Óxido Nítrico Sintase Neuronal (nNOS), após um quadro de hipóxia. Outra, diz que a MC é a causa da resposta exacerbada do sistema imunológico com produção de NO pela Óxido Nítrico Sintase Induzida (iNOS), presente nos macrófagos quando ativados pro determinantes antigênicos. Devido grande relevância da doença e dificuldade em enteder a patologia, modelos experimentais têm sido estabelecidos com a finalidade de esclarecer vias potenciais da evolução para MC, dentre eles o modelo de malária aviária causada pelo Plasmodium gallinaceum. Pouco se sabe sobre o seu papel do NO em modelos de malária aviária, principalmente devido inexistência de marcadores específicos para avaliar expressão das enzimas de síntese. Diante disso é importante estabelecer protocolos de purificação da iNOS de galinhas para a produção de um possível marcador. Para tanto se faz necessário investigar o papel do NO durante a malária aviária, em modelo experimental in vivo e in vitro, com linhagens de macrófagos de galinha HD11. Animais infectados com P. gallinaceum tratados com aminoguanidina (AG), um inibidor da produção de NO, tiveram maior sobrevida, além de menores níveis de nitrito no plasma e em macrófagos derivados de monócitos do sangue periférico, sugerindo a inibição da iNOS. Nos experimentos in vitro, células HD11 tratadas com LPS mostraram produção aumentada de NO, inferindo aumento na expressão e atividade da iNOS. Na separação proteica, observamos padrões diferentes que podem ser associados a uma elevada expressão da iNOS nos macrófagos ativados com LPS. Esse estudo proporcionará o melhor entendimento do modelo de malária aviária em galinhas, incluindo a cerebral, e envolvimento do sistema nitrérgico em galinhas infectadas com P. gallinaceum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HLA-DR13 has been associated with resistance to two major infectious diseases of humans. To investigate the peptide binding specificity of two HLA-DR13 molecules and the effects of the Gly/Val dimorphism at position 86 of the HLA-DR beta chain on natural peptide ligands, these peptides were acid-eluted from immunoaffinity-purified HLA-DRB1*1301 and -DRB1*1302, molecules that differ only at this position. The eluted peptides were subjected to pool sequencing or individual peptide sequencing by tandem MS or Edman microsequencing. Sequences were obtained for 23 peptides from nine source proteins. Three pool sequences for each allele and the sequences of individual peptides were used to define binding motifs for each allele. Binding specificities varied only at the primary hydrophobic anchor residue, the differences being a preference for the aromatic amino acids Tyr and Phe in DRB1*1302 and a preference for Val in DRB1*1301. Synthetic analogues of the eluted peptides showed allele specificity in their binding to purified HLA-DR, and Ala-substituted peptides were used to identify the primary anchor residues for binding. The failure of some peptides eluted from DRB1*1302 (those that use aromatic amino acids as primary anchors) to bind to DRB1*1301 confirmed the different preferences for peptide anchor residues conferred by the Gly-->Val change at position 86. These data suggest a molecular basis for the differential associations of HLA-DRB1*1301 and DRB1*1302 with resistance to severe malaria and clearance of hepatitis B virus infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Despite clinical descriptions of severe vivax malaria cases having been reported, data regarding immunological and inflammatory patterns are scarce. In this report, the inflammatory and immunological status of both mild and severe vivax malaria cases are compared in order to explore immunopathological events in this disease. Methods and Results: Active and passive malaria case detections were performed during 2007 in Buritis, Rondonia, in the Brazilian Amazon. A total of 219 participants enrolled the study. Study individuals were classified according to the presence of Plasmodium vivax infection within four groups: non-infected (n = 90), asymptomatic (n = 60), mild (n = 50) and severe vivax infection (n = 19). A diagnosis of malaria was made by microscopy and molecular assays. Since at present no clear criteria define severe vivax malaria, this study adapted the consensual criteria from falciparum malaria. Patients with severe P. vivax infection were younger, had lived for shorter time in the endemic area, and recalled having experienced less previous malaria episodes than individuals with no malaria infection and with mild or asymptomatic infection. Strong linear trends were identified regarding increasing plasma levels of C reactive protein (CRP), serum creatinine, bilirubins and the graduation of disease severity. Plasma levels of tumour necrosis factor (TNF), interferon-gamma(IFN-gamma) and also IFN-gamma/interleukin-10 ratios were increased and exhibited a linear trend with gradual augmentation of disease severity. Both laboratory parameters of organ dysfunction and inflammatory cytokines were reduced during anti-parasite therapy in those patients with severe disease. Conclusion: Different clinical presentations of vivax malaria infection present strong association with activation of pro-inflammatory responses and cytokine imbalance. These findings are of utmost importance to improve current knowledge about physiopathological concepts of this serious widespread disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Severe rhabdomyolysis (creatine phosphokinase = 29.400U/L) developed in a 16-year-old boy from Manaus. Brazil, after he started treatment with chloroquine for infection with Plasmodium vivax Treatment led to myoglobinuria and acute renal failure After hemodialysis. the patient improved and a muscle biopsy specimen showed no myophosphorylase or deaminase deficiency. This case of rhabdomyolysis associated with P vivax infection showed no comorbidities The pathogenesis is still unclear

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND:  We used four years of paediatric severe acute respiratory illness (SARI) sentinel surveillance in Blantyre, Malawi to identify factors associated with clinical severity and co-viral clustering.

METHODS:  From January 2011 to December 2014, 2363 children aged 3 months to 14 years presenting to hospital with SARI were enrolled. Nasopharyngeal aspirates were tested for influenza and other respiratory viruses. We assessed risk factors for clinical severity and conducted clustering analysis to identify viral clusters in children with co-viral detection.

RESULTS:  Hospital-attended influenza-positive SARI incidence was 2.0 cases per 10,000 children annually; it was highest children aged under 1 year (6.3 cases per 10,000), and HIV-infected children aged 5 to 9 years (6.0 cases per 10,000). 605 (26.8%) SARI cases had warning signs, which were positively associated with HIV infection (adjusted risk ratio [aRR]: 2.4, 95% CI: 1.4, 3.9), RSV infection (aRR: 1.9, 95% CI: 1.3, 3.0) and rainy season (aRR: 2.4, 95% CI: 1.6, 3.8). We identified six co-viral clusters; one cluster was associated with SARI with warning signs.

CONCLUSIONS:  Influenza vaccination may benefit young children and HIV infected children in this setting. Viral clustering may be associated with SARI severity; its assessment should be included in routine SARI surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria. Methodology/Principal Findings: Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p < 0.0001), with higher specificity (100% vs. 97%; p < 0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p < 0.0001; likelihood ratio: 7.45 vs. 3.14; p, 0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum. Conclusion: SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Malaria, schistosomiasis and geohelminth infection are linked to maternal and child morbidity and mortality in sub-Saharan Africa. Knowing the prevalence levels of these infections is vital to guide governments towards the implementation of successful and cost-effective disease control initiatives. Methodology/Principal Findings: A cross-sectional study of 1,237 preschool children (0–5 year olds), 1,142 school-aged children (6–15 year olds) and 960 women (.15 year olds) was conducted to understand the distribution of malnutrition, anemia, malaria, schistosomiasis (intestinal and urinary) and geohelminths in a north-western province of Angola. We used a recent demographic surveillance system (DSS) database to select and recruit suitable households. Malnutrition was common among children (23.3% under-weight, 9.9% wasting and 32.2% stunting), and anemia was found to be a severe public health problem (i.e., .40%). Malaria prevalence was highest among preschool children reaching 20.2%. Microhematuria prevalence levels reached 10.0% of preschool children, 16.6% of school-aged children and 21.7% of mothers. Geohelminth infections were common, affecting 22.3% of preschool children, 31.6% of school-aged children and 28.0% of mothers. Conclusions: Here we report prevalence levels of malaria, schistosomiasis and geohelminths; all endemic in this poorly described area where a DSS has been recently established. Furthermore we found evidence that the studied infections are associated with the observed levels of anemia and malnutrition, which can justify the implementation of integrated interventions for the control of these diseases and morbidities.