933 resultados para Serum Triglyceride
Resumo:
Background: There is limited information on the effect of isoflavones on homocysteine concentrations, a risk factor for a number of chronic diseases. Methods: Twenty-three premenopausal women participated in a double-blind, randomized, parallel study for four menstrual cycles. Subjects consumed either placebo or purified red clover (Trifolium pratense) isoflavone (86mg/day) tablets. Blood samples were collected weekly during cycles 1, 3, and 4 for determination of serum folate and total homocysteine concentrations. Dietary intake was monitored monthly. Results: Concentrations of folate and homocysteine in serum did not change significantly in either group, and there were no significant differences observed between the follicular and luteal phases of the menstrual cycle. The participants' dietary records indicated that nutrient intake was constant, and compliance was confirmed by analysis of urinary isoflavone concentrations and tablet counts in returned containers. Conclusions: These results suggest that in the absence of any dietary modification, supplementation with purified isoflavones that are predominantly methoxylated has no effect on serum homocysteine or folate in premenopausal women.
Resumo:
Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.
Resumo:
This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.
Resumo:
Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples1 . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults; higher concentrations in children ; similar concentrations in maternal and cord blood; and no gender differences. After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.