346 resultados para Serotype
Resumo:
The lipopolysaccharide of Salmonella and other Gram negative pathogenic species has been implicated as a major virulence determinant and in this study we report the role of LPS of S. Enteritidis in the colonisation and persistent gastrointestinal infection of young poultry. The gene encoding the unique O-antigen ligase, waaL, was mutated by insertional inactivation in a well characterised S. Enteritidis strain, S1400/94. The waaL mutant, designated PCP, produced rough colonies on agar medium, did not agglutinate O9 antiserum, did not produce an LPS ladder on silver stained gels and was serum sensitive. PCP and a nalidixic acid marked derivative of S1400/94 (S1400/94 Nal(r)) were used to orally challenge young chicks, separately and together in competitive index experiments. At post-mortem examination of 1-day-old chicks challenged S1400/94 Nal(r) and PCP separately there were no significant differences in the numbers of S1400/94 Nal(r) and PCP bacteria in tissues sampled on days 1, 2. and 5. By day 42 after challenge S1400/94 Nal(r) bacteria were recovered in significantly higher numbers than PCP from the caecal contents (P < 0.001). In competitive index studies in the 1-day-old chick PCP colonised, invaded and persisted in lower numbers than S1400/94 Nal(r). In 4-week-old chicks challenged separately, PCP bacteria were recovered from all tissues examined in significantly lower numbers than S1400/94 Nal(r). In competitive index experiments in 4-week-old chicks, PCP was not detected at any site and at any time point. Therefore, the O-antigen of S. Enteritidis plays art important role in poultry infections although this role is less important in the newly hatched chick. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Objectives: There are concerns that the use of enrofloxacin in livestock production may contribute to the development of fluoroquinolone resistance in zoonotic bacteria. The objective of our study was to investigate the effect of a single 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in a pig model. Results: Our results showed that a single treatment failed to eradicate S. Typhimurium DT104, which continued to be isolated up to 35 days after treatment. We also provide evidence that treatment positively selects for S. Typhimurium DT104 strains that are already nalidixic acid resistant (gyrA Asn-87) or cyclohexane resistant, the latter being indicative of an up-regulated efflux pump. Emergence of fluoroquinolone resistance was not detected during treatment or post-treatment in any of the Salmonella strains monitored. However, the effect of enrofloxacin on the nalidixic acid-resistant and cyclohexane-resistant S. Typhimurium DT104 outlasted the current withdrawal time of 10 days for Baytril (commercial veterinary formulation of enrofloxacin). Conclusions: In conclusion, our study has provided direct evidence that enrofloxacin-treated pigs could be entering abattoirs with higher numbers of quinolone-resistant zoonotic bacteria than untreated pigs, increasing the risk of these entering the food chain.
Resumo:
The CpxAR (Cpx) two-component regulator controls the expression of genes in response to a variety of environmental cues. The Cpx regulator has been implicated in the virulence of several gram-negative pathogens, although a role for Cpx in vivo has not been demonstrated directly. Here we investigate whether positive or negative control of gene expression by Cpx is important for the pathogenesis of Salmonella enterica serotype Typhimurium. The Cpx signal pathway in serotype Typhimurium was disrupted by insertional inactivation of the cpxA and cpxR genes. We also constitutively activated the Cpx pathway by making an internal in-frame deletion in cpxA (a cpxA* mutation). Activation of the Cpx pathway inhibited induction of the envelope stress response pathway controlled by the alternative sigma factor sigma(E) (encoded by rpoE). Conversely, the Cpx pathway was highly up-regulated (>40-fold) in a serotype Typhimurium rpoE mutant. The cpxA* mutation, but not the cpxA or the cpxR mutation, significantly reduced the capacity of serotype Typhimurium to adhere to and invade eucaryotic cells, although intracellular replication was not affected. The cpxA and cpxA* mutations significantly impaired the ability of serotype Typhimurium to grow in vivo in mice. To our knowledge, this is the first demonstration that the Cpx system is important for a bacterial pathogen in vivo.
Resumo:
This study evaluated two enzyme-linked immunosorbent assays (ELISA) in the detection of chicken serologic response against Salmonella enterica sorotype Typhimurium. The assays have used as detecting antigen the soluble bacterial proteins of a non-flagellated strain of Salmonella Typhimurium (AgTM), and antibody conjugated to peroxidase or alkaline phosphatase. According to the results, optimal dilutions of antigen (concentration 5.49 mg/mL) and serum samples in both assays were 1:20,000 and 1:1,000, respectively. In such conditions, the ELISA/AgTM was able to detect serological response to Salmonella Typhimurium. Cross-reactions to Salmonella serotypes Gallinarum and Pullorum were seen, but not with other serotypes such as Enteritidis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cryptococcosis is a subacute or chronic systemic mycosis with a cosmopolitan nature, caused by yeast of the genus Cryptococcus neoformans. The model of systemic cryptococcosis in mice with severe combined immunodeficiency (SCID) is useful for immunological and therapeutic study of the disease in immunodeficient hosts. Amphotericin B, fluconazole and flucytosine are the drugs most commonly used to treat cryptococcosis. Voriconazole is a triazole with high bioavailability, large distribution volume, and excellent penetration of the central nervous system. The objective of this study was to evaluate treatment with amphotericin B (AMB), voriconazole (VRC), and AMB, used in combination with VRC, of experimental pulmonary cryptococcosis in a murine model (SCID). The animals were inoculated intravenously (iv) with a solution containing 3.0 x 10(5) viable cells of C. neoformans ATCC 90112, (serotype A). Treatments were performed with amphotericin B (1.5 mg/kg/day), voriconazole (40.0 mg/kg/day) and AMB (1.5 mg/kg/day) combined with VRC (40.0 mg/kg/day); began 1 day after the initial infection; were daily; and lasted 15 days. Evaluations were performed using analysis of the survival curve and isolation of yeast in the lung tissue. There was a significant increase in survival in groups treated with AMB combined with VRC, compared with the untreated group and groups receiving other treatments (P < 0.05). In the group treated only with VRC and AMB combined with VRC, there was a significant reduction (P < 0.05) in the isolation of C. neoformans in lung tissue. Amphotericin B combined with voriconazole may be an effective alternative to increasing survival and may reduce yeast in the lung tissue of mice with pulmonary cryptococcosis and SCID.
Resumo:
The innate immune response of insects is one of the factors that may dictate their susceptibility to viral infection. Two immune signaling pathways, Toll and JAK-STAT, and the RNA interference (RNAi) pathway are involved in Aedes aegypti responses against dengue virus (DENV), however natural differences in these antiviral defenses among mosquito populations have not been studied. Here, two field Ae. aegypti populations from distinct ecological environments, one from Recife and the other from Petrolina (Brazil), and a laboratory strain were studied for their ability to replicate a primary isolate of dengue virus serotype 2 (DENV-2). Virus infectivity and replication were determined in insect tissues collected after viral exposure through reverse-transcription real time PCR (RT-PCR). The expression of a transcript representing these defense mechanisms (Toll, JAK-STAT and RNAi) in the midgut and fat body was studied with RTPCR to evaluate variations in innate immune mechanisms possibly employed against DENV. Analyses of infection rates indicated that the field populations were more susceptible to DENV-2 infection than the lab strain. There were distinct expression patterns among mosquito populations, in both control and infected insects. Moreover, lower expression of immune molecules in DENV-2-infected insects compared to controls was observed in the two field populations. These results suggest that natural variations in vector competence against DENV may be partly due to differences in mosquito defense mechanisms, and that the down-regulation of immune transcripts after viral infection depends on the insect strain. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/kappa antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 x 10(7) M(-1) +/- 2.8 x 10(7) M(-1)) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 microg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.
Resumo:
Actinobacillus pleuropneumoniae is an important respiratory pathogen causing pleuropneumonia in pig. The species is genetically characterized by the presence of 4 RTX (Repeats in the Structural ToXin) toxin genes: apxI, apxII, and apxIII genes are differentially present in various combinations among the different serotypes, thereby defining pathogenicity; the apxIV gene is present in all serotypes. Polymerase chain reaction (PCR)-based apx gene typing is done in many veterinary diagnostic laboratories, especially reference laboratories. The present report describes the isolation of atypical A. pleuropneumoniae from 4 independent cases from 2 countries. All isolates were beta-nicotinamide adenine dinucleotide (beta-NAD) dependent and nonhemolytic but showed strong co-hemolysis with the sphingomyelinase of Staphylococcus aureus on sheep blood agar. Classical biochemical tests as well as Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and sequence-based analysis (16S ribosomal RNA [rRNA] and rpoB genes) identified them as A. pleuropneumoniae. Apx-toxin gene typing using 2 different PCR systems showed the presence of apxIV and only the apxIII operon (apxIIICABD). None of the apxI or apxII genes were present as confirmed by Southern blot analysis. The 16S rRNA and rpoB gene analyses as well as serotype-specific PCR indicate that the isolates are variants of serotype 3. Strains harboring only apxIV and the apxIII operon are possibly emerging types of A. pleuropneumoniae and should therefore be carefully monitored for epidemiological reasons.
Resumo:
Twenty-seven sheep of the four most common Swiss breeds and the English breed Poll Dorset were experimentally infected with a northern European field strain of bluetongue virus serotype 8 (BTV-8). Animals of all breeds developed clinical signs, viremia and pathological lesions, demonstrating that BTV-8 is fully capable of replicating and inducing bluetongue disease (BT) in the investigated sheep. Necropsy performed between 10 and 16 days post-infectionem (d.p.i.) revealed BT-typical hemorrhages, effusions, edema, erosions and activation of lymphatic tissues. Hemorrhages on the base of the Arteria pulmonalis and the left Musculus papillaris subauricularis were frequently present. Histology confirmed the macroscopical findings. Using a score system, clinical manifestation and pathology were found to be significantly related. Furthermore, clinical signs and fever were shown to be indicative for the concurrent presence of high amounts of viral ribonucleic acid (RNA) in blood. Spleen, lung, lymph nodes and tonsils from all animals were analyzed regarding viral RNA loads and infectivity using real-time reverse transcriptase PCR (rRT-PCR) and virus isolation in cell culture, respectively. The highest amount of viral RNA was detected in spleen and lung and rRT-PCR revealed to be a more sensitive method for virus detection compared to virus isolation. A long-term follow-up was performed with three sheep showing that BTV-8 viral RNA in blood was present up to 133 d.p.i. and in certain tissues even on 151 d.p.i. No significant breed-related differences were observed concerning clinicopathological picture and viremia, and the Swiss sheep were as susceptible to BTV-8 infection as Poll Dorset sheep, demonstrating a remarkably high virulence of BTV-8 for indigenous sheep breeds.
Resumo:
BACKGROUND: Bluetongue virus serotype 8 (BTV-8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass-vaccination program was launched in most affected countries using whole virus inactivated vaccines. OBJECTIVE: To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV-8 in South American camelids (SAC) in a field trial. ANIMALS: Forty-two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. METHODS: The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV-8 virus by real time-polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. RESULTS: All vaccinated animals developed antibodies to BTV-8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. CONCLUSIONS AND CLINICAL IMPORTANCE: The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV-8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.
Resumo:
BACKGROUND: Outbreak of bluetongue virus serotype-8 (BTV-8) infection in domestic ruminants in Northern Europe. OBJECTIVE: To investigate the South American camelids' (SAC) susceptibility to BTV-8 infection, their role in the epidemiology of the disease, and the use of currently available serological screening tests in SAC in an endemic region. ANIMALS: Three hundred and fifty-four unvaccinated and 27 vaccinated SAC (170 llamas, 201 alpacas), ranging in age from 1 month to 17 years between June and August 2008. The SAC originated from 44 herds throughout the country, representing 10% of the Swiss SAC population. METHODS: Prospective, observational study of a convenience sample of SAC. Serum samples were analyzed with 2 serological screening tests. When results diverged, a 3rd ELISA was carried out for confirmation (ID Screen Bluetongue Competition ELISA kit). RESULTS: All sera from the 354 unvaccinated animals were negative in the endemic region. Reliable seroconversion was observed after administration of 2 doses of vaccine. CONCLUSIONS AND CLINICAL IMPORTANCE: This study suggests a low susceptibility of SAC to BTV-8 despite the presence of the virus in the cattle and small ruminant population, indicating that SAC do not play a major role in the epidemiology of BTV-8. Furthermore, these results indicate that commercially available serological tests for BTV-8 can be used in SAC.