898 resultados para Sensor data


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Single-channel Fusion ARTMAP is functionally equivalent to Fuzzy ART during unsupervised learning and to Fuzzy ARTMAP during supervised learning. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, become inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called paraellel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of them. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network. Fusion ARTMAP's multi-channel coding is illustrated by simulations of the Quadruped Mammal database.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless sensor node platforms are very diversified and very constrained, particularly in power consumption. When choosing or sizing a platform for a given application, it is necessary to be able to evaluate in an early design stage the impact of those choices. Applied to the computing platform implemented on the sensor node, it requires a good understanding of the workload it must perform. Nevertheless, this workload is highly application-dependent. It depends on the data sampling frequency together with application-specific data processing and management. It is thus necessary to have a model that can represent the workload of applications with various needs and characteristics. In this paper, we propose a workload model for wireless sensor node computing platforms. This model is based on a synthetic application that models the different computational tasks that the computing platform will perform to process sensor data. It allows to model the workload of various different applications by tuning data sampling rate and processing. A case study is performed by modeling different applications and by showing how it can be used for workload characterization. © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a framework for a telecommunications interface which allows data from sensors embedded in Smart Grid applications to reliably archive data in an appropriate time-series database. The challenge in doing so is two-fold, firstly the various formats in which sensor data is represented, secondly the problems of telecoms reliability. A prototype of the authors' framework is detailed which showcases the main features of the framework in a case study featuring Phasor Measurement Units (PMU) as the application. Useful analysis of PMU data is achieved whenever data from multiple locations can be compared on a common time axis. The prototype developed highlights its reliability, extensibility and adoptability; features which are largely deferred from industry standards for data representation to proprietary database solutions. The open source framework presented provides link reliability for any type of Smart Grid sensor and is interoperable with existing proprietary database systems, and open database systems. The features of the authors' framework allow for researchers and developers to focus on the core of their real-time or historical analysis applications, rather than having to spend time interfacing with complex protocols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As technology advances not only do new standards and programming styles appear but also some of the previously established ones gain relevance. In a new Internet paradigm where interconnection between small devices is key to the development of new businesses and scientific advancement there is the need to find simple solutions that anyone can implement in order to allow ideas to become more than that, ideas. Open-source software is still alive and well, especially in the area of the Internet of Things. This opens windows for many low capital entrepreneurs to experiment with their ideas and actually develop prototypes, which can help identify problems with a project or shine light on possible new features and interactions. As programming becomes more and more popular between people of fields not related to software there is the need for guidance in developing something other than basic algorithms, which is where this thesis comes in: A comprehensive document explaining the challenges and available choices of developing a sensor data and message delivery system, which scales well and implements the delivery of critical messages. Modularity and extensibility were also given much importance, making this an affordable tool for anyone that wants to build a sensor network of the kind.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work provides a general description of the multi sensor data fusion concept, along with a new classification of currently used sensor fusion techniques for unmanned underwater vehicles (UUV). Unlike previous proposals that focus the classification on the sensors involved in the fusion, we propose a synthetic approach that is focused on the techniques involved in the fusion and their applications in UUV navigation. We believe that our approach is better oriented towards the development of sensor fusion systems, since a sensor fusion architecture should be first of all focused on its goals and then on the fused sensors

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, A cross layer based on the modified versions of APTEEN and GinMAC has been designed and implemented, with new features, such as a mobility module and routes discovery algorithms have been added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability for the proposed healthcare application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.