934 resultados para Sensitive stamens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Gray and McNaughton’s revised RST, this study investigated the extent to which the Behavioural Approach System (BAS) and the Fight-Flight-Freeze System (FFFS) influence the processing of gain-framed and loss-framed road safety messages and subsequent message acceptance. It was predicted that stronger BAS sensitivity and FFFS sensitivity would be associated with greater processing and acceptance of the gain-framed messages and loss-framed messages, respectively. Young drivers (N = 80, aged 17–25 years) viewed one of four road safety messages and completed a lexical decision task to assess message processing. Both self-report (e.g., Corr-Cooper RST-PQ) and behavioural measures (i.e., CARROT and Q-Task) were used to assess BAS and FFFS traits. Message acceptance was measured via self-report ratings of message effectiveness, behavioural intentions, attitudes and subsequent driving behaviour. The results are discussed in the context of the effect that differences in reward and punishment sensitivities may have on message processing and message acceptance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 l of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a proof of concept for a novel nanosensor for the detection of ultra-trace amounts of bio-active molecules in complex matrices. The nanosensor is comprised of gold nanoparticles with an ultra-thin silica shell and antibody surface attachment, which allows for the immobilization and direct detection of bio-active molecules by surface enhanced Raman spectroscopy (SERS) without requiring a Raman label. The ultra-thin passive layer (~1.3 nm thickness) prevents competing molecules from binding non-selectively to the gold surface without compromising the signal enhancement. The antibodies attached on the surface of the nanoparticles selectively bind to the target molecule with high affinity. The interaction between the nanosensor and the target analyte result in conformational rearrangements of the antibody binding sites, leading to significant changes in the surface enhanced Raman spectra of the nanoparticles when compared to the spectra of the un-reacted nanoparticles. Nanosensors of this design targeting the bio-active compounds erythropoietin and caffeine were able to detect ultra-trace amounts the analyte to the lower quantification limits of 3.5×10−13 M and 1×10−9 M, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both pristine and Cs doped GO to NO2 at room temperature is studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fields of molecular biology and cell biology are being flooded with complex genomic and proteomic datasets of large dimensions. We now recognize that each molecule in the cell and tissue can no longer be viewed as an isolated entity. Instead, each molecule must be considered as one member of an interacting network. Consequently, there is an urgent need for mathematical models to understand the behavior of cell signaling networks in health and in disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological modernization is widely believed to contribute positively both to economic development and to environmental and resource conservation, through improvements in productivity and strengthening of business competitiveness. However, this may not always be true, particularly in the short term, as it requires substantial investments and may impose financial burdens on firms undertaking such investments. This study empirically examines the effects of technological modernization in China's iron and steel industry in the 1990s on conventional economic productivity (CEP) and environmentally sensitive productivities (ESPs). We employ a directional distance function that can handle multiple inputs and outputs to compute relative production efficiencies. We apply these models to the data covering 27 iron and steel firms in China between 1990 and 1999-a period when the Chinese iron and steel industry modernized rapidly. We find that ESPs have continuously improved, even in the period when the CEP declined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of sequence similarity is a central issue in computational biology, a problem addressed primarily through BLAST, an alignment based heuristic which has underpinned much of the analysis and annotation of the genomic era. Despite their success, alignment-based approaches scale poorly with increasing data set size, and are not robust under structural sequence rearrangements. Successive waves of innovation in sequencing technologies – so-called Next Generation Sequencing (NGS) approaches – have led to an explosion in data availability, challenging existing methods and motivating novel approaches to sequence representation and similarity scoring, including adaptation of existing methods from other domains such as information retrieval. In this work, we investigate locality-sensitive hashing of sequences through binary document signatures, applying the method to a bacterial protein classification task. Here, the goal is to predict the gene family to which a given query protein belongs. Experiments carried out on a pair of small but biologically realistic datasets (the full protein repertoires of families of Chlamydia and Staphylococcus aureus genomes respectively) show that a measure of similarity obtained by locality sensitive hashing gives highly accurate results while offering a number of avenues which will lead to substantial performance improvements over BLAST..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glassy carbon (GC) electrode modified with a self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α-CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α-CoIITAPc. The SAM showed two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10−9 to 30×10−9 M with a detection limit of 1.4×10−10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.