990 resultados para Semisquaraine Dyes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic degradation performance of photocatalysts TiO2 supported on 13-X, Na-Y, 4A zeolites with different loading content was evaluated using the photocatalytic oxidation of dyes direct fast scarlet 4BS and acid red 3B in aqueous medium. The results showed that the best reaction dosage of TiO2-zeolite catalysts is about 2 g/l and the photocatalytic kinetics follows first order for all supported catalysts. The photocatalytic activity order of the three series catalysts is 13X type >Y type >4A type. The physical state of titanium dioxide on the supports is evaluated by X-ray photoelectron spectra (XPS), powder X-ray diffraction (XRD), BET, and FTIR. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the memory effect in the devices consisting of dye-doped N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine sandwiched between indium-tin oxide and Ag electrodes. It was found that the on/off current ratio was greatly improved by the doped fluorescent dyes compared with nondoping devices. A mechanism of charge trapping was demonstrated to explain the improvement of the memory effect. For the off state, the conduction process is dominated by the trapping current, which is a characteristic of the space-charge limited current, whereas the on state is dominated by the detrapping current, and interpreted by Poole-Frenkel emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of preparation of stable, homogeneous and controlled thickness TiO2 film through hydrolysis of Ti(OC4H(9))(4) is introduced in detail. The structure and property of the film have been investigated by means of SEM and FT-IR techniques. The strong quenching effect between sensitizing dyes and TiO2 film is observed in their fluorescence spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the rate-limiting steps of reactive dye adsorption onto FS-400 activated carbon were elucidated through the investigation of adsorption kinetics. These studies initially revealed that only 20% of the available adsorption capacity was achieved during the first 6 h of mixing. Kinetic profiles showed that the adsorption process was mainly controlled by external diffusion during the first 30 min of the reaction, after which internal diffusion controlled the process. The interruption test method identified the rate-limiting steps; the results showed that sorption of reactive dyes onto FS-400 was mainly controlled by internal diffusion. Furthermore, the external and internal diffusion coefficients and the desorption rate decreased after the interruption period. The same parameters increased when the solution temperature was raised. The thermodynamic parameters studied showed that the adsorption of reactive dyes onto activated carbon was endothermic and is mainly controlled by internal diffusion with a minor effect of external diffusion.