977 resultados para Semantic technologies


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The semantic web represents a current research effort to increase the capability of machines to make sense of content on the web. In this class, Peter Scheir will give a guest lecture on the basic principles underlying the semantic web vision, including RDF, OWL and other standards.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasingly, distributed systems are being used to host all manner of applications. While these platforms provide a relatively cheap and effective means of executing applications, so far there has been little work in developing tools and utilities that can help application developers understand problems with the supporting software, or the executing applications. To fully understand why an application executing on a distributed system is not behaving as would be expected it is important that not only the application, but also the underlying middleware, and the operating system are analysed too, otherwise issues could be missed and certainly overall performance profiling and fault diagnoses would be harder to understand. We believe that one approach to profiling and the analysis of distributed systems and the associated applications is via the plethora of log files generated at runtime. In this paper we report on a system (Slogger), that utilises various emerging Semantic Web technologies to gather the heterogeneous log files generated by the various layers in a distributed system and unify them in common data store. Once unified, the log data can be queried and visualised in order to highlight potential problems or issues that may be occurring in the supporting software or the application itself.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the constant grow of enterprises and the need to share information across departments and business areas becomes more critical, companies are turning to integration to provide a method for interconnecting heterogeneous, distributed and autonomous systems. Whether the sales application needs to interface with the inventory application, the procurement application connect to an auction site, it seems that any application can be made better by integrating it with other applications. Integration between applications can face several troublesome due the fact that applications may not have been designed and implemented having integration in mind. Regarding to integration issues, two tier software systems, composed by the database tier and by the “front-end” tier (interface), have shown some limitations. As a solution to overcome the two tier limitations, three tier systems were proposed in the literature. Thus, by adding a middle-tier (referred as middleware) between the database tier and the “front-end” tier (or simply referred application), three main benefits emerge. The first benefit is related with the fact that the division of software systems in three tiers enables increased integration capabilities with other systems. The second benefit is related with the fact that any modifications to the individual tiers may be carried out without necessarily affecting the other tiers and integrated systems and the third benefit, consequence of the others, is related with less maintenance tasks in software system and in all integrated systems. Concerning software development in three tiers, this dissertation focus on two emerging technologies, Semantic Web and Service Oriented Architecture, combined with middleware. These two technologies blended with middleware, which resulted in the development of Swoat framework (Service and Semantic Web Oriented ArchiTecture), lead to the following four synergic advantages: (1) allow the creation of loosely-coupled systems, decoupling the database from “front-end” tiers, therefore reducing maintenance; (2) the database schema is transparent to “front-end” tiers which are aware of the information model (or domain model) that describes what data is accessible; (3) integration with other heterogeneous systems is allowed by providing services provided by the middleware; (4) the service request by the “frontend” tier focus on ‘what’ data and not on ‘where’ and ‘how’ related issues, reducing this way the application development time by developers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semantic Web technologies are strategic in order to fulfill the openness requirement of Self-Aware Pervasive Service Ecosystems. In fact they provide agents with the ability to cope with distributed data, using RDF to represent information, ontologies to describe relations between concepts from any domain (e.g. equivalence, specialization/extension, and so on) and reasoners to extract implicit knowledge. The aim of this thesis is to study these technologies and design an extension of a pervasive service ecosystems middleware capable of exploiting semantic power, and deepening performance implications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With emergence of "Semantic Web" there has been much discussion about the impact of technologies such as XML and RDF on the way we use the Web for developing e-learning applications and perhaps more importantly on how we can personalise these applications. Personalisation of e-learning is viewed by many authors (see amongst others Eklund & Brusilovsky, 1998; Kurzel, Slay, & Hagenus, 2003; Martinez, 2000; Sampson, Karagiannidis, & Kinshuk, 2002; Voigt & Swatman, 2003) as the key challenge for the learning technologists. According to Kurzel (2004) the tailoring of e-learning applications can have an impact on content and how it's accesses; the media forms used; method of instruction employed and the learning styles supported. This paper will report on a research project currently underway at the eCentre in University of Greenwich which is exploring different approaches and methodologies to create an e-learning platform with personalisation built-in. This personalisation is proposed to be set from different levels of within the system starting from being guided by the information that the user inputs into the system down to the lower level of being set using information inferred by the system's processing engine.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector space models (VSMs) represent word meanings as points in a high dimensional space. VSMs are typically created using a large text corpora, and so represent word semantics as observed in text. We present a new algorithm (JNNSE) that can incorporate a measure of semantics not previously used to create VSMs: brain activation data recorded while people read words. The resulting model takes advantage of the complementary strengths and weaknesses of corpus and brain activation data to give a more complete representation of semantics. Evaluations show that the model 1) matches a behavioral measure of semantics more closely, 2) can be used to predict corpus data for unseen words and 3) has predictive power that generalizes across brain imaging technologies and across subjects. We believe that the model is thus a more faithful representation of mental vocabularies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vector Space Models (VSMs) of Semantics are useful tools for exploring the semantics of single words, and the composition of words to make phrasal meaning. While many methods can estimate the meaning (i.e. vector) of a phrase, few do so in an interpretable way. We introduce a new method (CNNSE) that allows word and phrase vectors to adapt to the notion of composition. Our method learns a VSM that is both tailored to support a chosen semantic composition operation, and whose resulting features have an intuitive interpretation. Interpretability allows for the exploration of phrasal semantics, which we leverage to analyze performance on a behavioral task.