985 resultados para Segmentation Method
Resumo:
Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.
Resumo:
SPOT simulation imagery was acquired for a test site in the Forest of Dean in Gloucestershire, U.K. This data was qualitatively and quantitatively evaluated for its potential application in forest resource mapping and management. A variety of techniques are described for enhancing the image with the aim of providing species level discrimination within the forest. Visual interpretation of the imagery was more successful than automated classification. The heterogeneity within the forest classes, and in particular between the forest and urban class, resulted in poor discrimination using traditional `per-pixel' automated methods of classification. Different means of assessing classification accuracy are proposed. Two techniques for measuring textural variation were investigated in an attempt to improve classification accuracy. The first of these, a sequential segmentation method, was found to be beneficial. The second, a parallel segmentation method, resulted in little improvement though this may be related to a combination of resolution in size of the texture extraction area. The effect on classification accuracy of combining the SPOT simulation imagery with other data types is investigated. A grid cell encoding technique was selected as most appropriate for storing digitised topographic (elevation, slope) and ground truth data. Topographic data were shown to improve species-level classification, though with sixteen classes overall accuracies were consistently below 50%. Neither sub-division into age groups or the incorporation of principal components and a band ratio significantly improved classification accuracy. It is concluded that SPOT imagery will not permit species level classification within forested areas as diverse as the Forest of Dean. The imagery will be most useful as part of a multi-stage sampling scheme. The use of texture analysis is highly recommended for extracting maximum information content from the data. Incorporation of the imagery into a GIS will both aid discrimination and provide a useful management tool.
Resumo:
The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
Purpose: Custom cranio-orbital implants have been shown to achieve better performance than their hand-shaped counterparts by restoring skull anatomy more accurately and by reducing surgery time. Designing a custom implant involves reconstructing a model of the patient's skull using their computed tomography (CT) scan. The healthy side of the skull model, contralateral to the damaged region, can then be used to design an implant plan. Designing implants for areas of thin bone, such as the orbits, is challenging due to poor CT resolution of bone structures. This makes preoperative design time-intensive since thin bone structures in CT data must be manually segmented. The objective of this thesis was to research methods to accurately and efficiently design cranio-orbital implant plans, with a focus on the orbits, and to develop software that integrates these methods. Methods: The software consists of modules that use image and surface restoration approaches to enhance both the quality of CT data and the reconstructed model. It enables users to input CT data, and use tools to output a skull model with restored anatomy. The skull model can then be used to design the implant plan. The software was designed using 3D Slicer, an open-source medical visualization platform. It was tested on CT data from thirteen patients. Results: The average time it took to create a skull model with restored anatomy using our software was 0.33 hours ± 0.04 STD. In comparison, the design time of the manual segmentation method took between 3 and 6 hours. To assess the structural accuracy of the reconstructed models, CT data from the thirteen patients was used to compare the models created using our software with those using the manual method. When registering the skull models together, the difference between each set of skulls was found to be 0.4 mm ± 0.16 STD. Conclusions: We have developed a software to design custom cranio-orbital implant plans, with a focus on thin bone structures. The method described decreases design time, and is of similar accuracy to the manual method.
Resumo:
Above ground biomass is frequently estimated with forest inventory data and an extrapolation method for the per unit area evaluations. This procedure is labour demanding and costly. In this study above ground biomass functions, whose independent variable is crown horizontal projection, were developed. Multi-resolution segmentation method and object-oriented classification, based on very high spatial resolution satellite images, were used to obtain the area of tree crown horizontal projection for umbrella pine (Pinus pinea L.). A set of inventory plots were measured and with existing allometric functions for this species above ground biomass per tree and per plot were calculated. The two data sets were used to fit linear functions both for individual plot and their cumulative values. The results show a good performance of the models. Errors smaller than 10% are obtained for stand areas greater than 1.4 ha. These functions have the advantages of estimating above ground biomass for all the area under study or surveillance, not requiring forest inventory; allow monitoring in short time periods; and are easily implemented in a geographical information system environment.
Resumo:
Forest biomass has been having an increasing importance in the world economy and in the evaluation of the forests development and monitoring. It was identified as a global strategic reserve, due to its applications in bioenergy, bioproduct development and issues related to reducing greenhouse gas emissions. The estimation of above ground biomass is frequently done with allometric functions per species with plot inventory data. An adequate sampling design and intensity for an error threshold is required. The estimation per unit area is done using an extrapolation method. This procedure is labour demanding and costly. The mail goal of this study is the development of allometric functions for the estimation of above ground biomass with ground cover as independent variable, for forest areas of holm aok (Quercus rotundifolia), cork oak (Quercus suber) and umbrella pine (Pinus pinea) in multiple use systems. Ground cover per species was derived from crown horizontal projection obtained by processing high resolution satellite images, orthorectified, geometrically and atmospheric corrected, with multi-resolution segmentation method and object oriented classification. Forest inventory data were used to estimate plot above ground biomass with published allometric functions at tree level. The developed functions were fitted for monospecies stands and for multispecies stands of Quercus rotundifolia and Quercus suber, and Quercus suber and Pinus pinea. The stand composition was considered adding dummy variables to distinguish monospecies from multispecies stands. The models showed a good performance. Noteworthy is that the dummy variables, reflecting the differences between species, originated improvements in the models. Significant differences were found for above ground biomass estimation with the functions with and without the dummy variables. An error threshold of 10% corresponds to stand areas of about 40 ha. This method enables the overall area evaluation, not requiring extrapolation procedures, for the three species, which occur frequently in multispecies stands.
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
We present a method for segmenting white matter tracts from high angular resolution diffusion MR. images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms