907 resultados para Segmentation
Resumo:
This paper presents a method for the continuous segmentation of dynamic objects using only a vehicle mounted monocular camera without any prior knowledge of the object’s appearance. Prior work in online static/dynamic segmentation is extended to identify multiple instances of dynamic objects by introducing an unsupervised motion clustering step. These clusters are then used to update a multi-class classifier within a self-supervised framework. In contrast to many tracking-by-detection based methods, our system is able to detect dynamic objects without any prior knowledge of their visual appearance shape or location. Furthermore, the classifier is used to propagate labels of the same object in previous frames, which facilitates the continuous tracking of individual objects based on motion. The proposed system is evaluated using recall and false alarm metrics in addition to a new multi-instance labelled dataset to evaluate the performance of segmenting multiple instances of objects.
Resumo:
This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot traverses for robotic applications. A major theme of this thesis was to exploit the availability of 3D information acquired from robot sensors to improve upon 2D object classification alone. The proposed methods have been evaluated on several indoor and outdoor datasets collected from mobile robotic platforms including a quadcopter and ground vehicle covering several kilometres of urban roads.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users for targeted surveys and various operational and strategic planning improvements. However, the existing market segmentation studies in the literature have been generally done using passenger surveys, which have various limitations. The smart card (SC) data from an automated fare collection system facilitate the understanding of the multiday travel pattern of transit passengers and can be used to segment them into identifiable types of similar behaviors and needs. This paper proposes a comprehensive methodology for passenger segmentation solely using SC data. After reconstructing the travel itineraries from SC transactions, this paper adopts the density-based spatial clustering of application with noise (DBSCAN) algorithm to mine the travel pattern of each SC user. An a priori market segmentation approach then segments transit passengers into four identifiable types. The methodology proposed in this paper assists transit operators to understand their passengers and provides them oriented information and services.
Resumo:
This paper describes our participation in the Chinese word segmentation task of CIPS-SIGHAN 2010. We implemented an n-gram mutual information (NGMI) based segmentation algorithm with the mixed-up features from unsupervised, supervised and dictionarybased segmentation methods. This algorithm is also combined with a simple strategy for out-of-vocabulary (OOV) word recognition. The evaluation for both open and closed training shows encouraging results of our system. The results for OOV word recognition in closed training evaluation were however found unsatisfactory.
Resumo:
Market segmentation has received relatively limited attention in social marketing, particularly within the context of changing children’s physical activity behaviour. This is an important area of investigation given growing concern over childhood obesity globally. The present research aims to extend current understanding of the applicability of market segmentation within this context. The results of a two-step cluster analysis on data from 512 respondents of an online survey show three distinct segments of caregivers, each with unique beliefs about their primary school children walking to/from school. The results demonstrate the validity of employing the process of market segmentation within this social context and provide further insights for targeting the identified segments through tailored social marketing programs.
Resumo:
Recent changes in the aviation industry and in the expectations of travellers have begun to alter the way we approach our understanding, and thus the segmentation, of airport passengers. The key to successful segmentation of any population lies in the selection of the criteria on which the partitions are based. Increasingly, the basic criteria used to segment passengers (purpose of trip and frequency of travel) no longer provide adequate insights into the passenger experience. In this paper, we propose a new model for passenger segmentation based on the passenger core value, time. The results are based on qualitative research conducted in-situ at Brisbane International Terminal during 2012-2013. Based on our research, a relationship between time sensitivity and degree of passenger engagement was identified. This relationship was used as the basis for a new passenger segmentation model, namely: Airport Enthusiast (engaged, non time sensitive); Time Filler (non engaged, non time sensitive); Efficiency Lover (non engaged, time sensitive) and Efficient Enthusiast (engaged, time sensitive). The outcomes of this research extend the theoretical knowledge about passenger experience in the terminal environment. These new insights can ultimately be used to optimise the allocation of space for future terminal planning and design.
Resumo:
Objective This study seeks establish whether meaningful subgroups exist within a 14-16 year old adolescent population and if these segments respond differently to the Game On: Know Alcohol (GOKA) intervention, a school-based alcohol social marketing program. Methodology This study is part of a larger cluster randomized controlled evaluation of the Game On: Know Alcohol (GOKA) program implemented in 14 schools in 2013/2014. TwoStep cluster analysis was conducted to segment 2114 high school adolescents (14-16 years old) on the basis of 22 demographic, behavioral and psychographic variables. Program effects on knowledge, attitudes, behavioral intentions, social norms, expectancies and refusal self-efficacy of identified segments was subsequently examined. Results Three segments were identified: (1) Abstainers (2) Bingers (3) Moderate Drinkers. Program effects varied significantly across segments. The strongest positive change effects post participation were observed for the Bingers, while mixed effects were evident for Moderate Drinkers and Abstainers. Conclusions These findings provide preliminary empirical evidence supporting application of social marketing segmentation in alcohol education programs. Development of targeted programs that meet the unique needs of each of the three identified segments is indicated to extend the social marketing footprint in alcohol education.
Resumo:
Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.
Resumo:
In this paper we present a robust method to detect handwritten text from unconstrained drawings on normal whiteboards. Unlike printed text on documents, free form handwritten text has no pattern in terms of size, orientation and font and it is often mixed with other drawings such as lines and shapes. Unlike handwritings on paper, handwritings on a normal whiteboard cannot be scanned so the detection has to be based on photos. Our work traces straight edges on photos of the whiteboard and builds graph representation of connected components. We use geometric properties such as edge density, graph density, aspect ratio and neighborhood similarity to differentiate handwritten text from other drawings. The experiment results show that our method achieves satisfactory precision and recall. Furthermore, the method is robust and efficient enough to be deployed in a mobile device. This is an important enabler of business applications that support whiteboard-centric visual meetings in enterprise scenarios. © 2012 IEEE.
Resumo:
This article examines whether cluster analysis can be used to identify groups of Finnish residents with similar housing preferences. Because homebuilders in Finland have been providing relatively homogeneous products to an increasingly diverse population, current housing may not represent the occupiers' preferences so a segmentation approach relying on socioeconomic characteristics and expressed preferences may not be sufficient. We use data collected via questionnaire in a principal component analysis followed by a hierarchical cluster analysis to determine whether different combinations of housing attributes are important to groups of residents. We can identify four clusters of housing residents based on important characteristics when looking for a house. The clusters describe Finnish people in different phases of the life cycle and with different preferences based on their recreational activities and financial expenditures. Mass customization of housing could be used to better appeal to these different clusters of consumers who share similar preferences, increasing consumer satisfaction and improving profitability.
Resumo:
Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.