997 resultados para Sedimentary evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending from latitude 34ºS to 22ºS the Southern Brazilian shelf constitutes the only part of the Brazilian shelf with a subtropical to temperate environment. The studies on the different geological aspects of the area began in the 1960's and have recently been reassessed after studies related to the determination of the Economic Exclusive Zone. In terms of morphology, the Southern Brazilian shelf may be divided into three sectors, the São Paulo Bight, the Florianópolis-Mostardas Sector and the Rio Grande Cone, characterized by conspicuous differences in terms of geological determining factors, bathymetry, declivities and the presence of canyons and channels. Despite the existence of hundreds of radiocarbon datings the sea level changes curve of southern Brazil during the Last Glacial Cycle is still a matter of debate. A recent controversy on the Middle and late Holocene sea level changes curve raised the question of the amplitude of the oscillations which occurred in the period. Also, a few but relatively consistent radiocarbon datings suggest the occurrence of a high sea level during Isotope Stage 3. In terms of sedimentary cover the Southern Brazilian shelf exhibits a very strong hydrodynamic control, both latitudinal and bathymetrical. The sector southward from 25ºS is characterized by the influence of the plume of water carrying sediments originating from the Río de La Plata. Actually its presence is conspicuous up to 28ºS, with the area between this latitude and 25ºS constituting a transitional zone. In terms of bathymetry the outer shelf is marked by the "floor-polisher" effect of the Brazil Current, which is responsible for the maintenance of a relict facies in areas deeper than 100 meters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morpho-structural evolution of oceanic islands results from competition between volcano growth and partial destruction by mass-wasting processes. We present here a multi-disciplinary study of the successive stages of development of Faial (Azores) during the last 1 Myr. Using high-resolution digital elevation model (DEM), and new K/Ar, tectonic, and magnetic data, we reconstruct the rapidly evolving topography at successive stages, in response to complex interactions between volcanic construction and mass wasting, including the development of a graben. We show that: (1) sub-aerial evolution of the island first involved the rapid growth of a large elongated volcano at ca. 0.85 Ma, followed by its partial destruction over half a million years; (2) beginning about 360 ka a new small edifice grew on the NE of the island, and was subsequently cut by normal faults responsible for initiation of the graben; (3) after an apparent pause of ca. 250 kyr, the large Central Volcano (CV) developed on the western side of the island at ca 120 ka, accumulating a thick pile of lava flows in less than 20 kyr, which were partly channelized within the graben; (4) the period between 120 ka and 40 ka is marked by widespread deformation at the island scale, including westward propagation of faulting and associated erosion of the graben walls, which produced sedimentary deposits; subsequent growth of the CV at 40 ka was then constrained within the graben, with lava flowing onto the sediments up to the eastern shore; (5) the island evolution during the Holocene involves basaltic volcanic activity along the main southern faults and pyroclastic eruptions associated with the formation of a caldera volcano-tectonic depression. We conclude that the whole evolution of Faial Island has been characterized by successive short volcanic pulses probably controlled by brief episodes of regional deformation. Each pulse has been separated by considerable periods of volcanic inactivity during which the Faial graben gradually developed. We propose that the volume loss associated with sudden magma extraction from a shallow reservoir in different episodes triggered incremental downward graben movement, as observed historically, when immediate vertical collapse of up to 2 m was observed along the western segments of the graben at the end of the Capelinhos eruptive crises (1957-58).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed knowledge of the 3-D arrangement and lateral facies relationships of the stacking patterns in coastal deposits is essential to approach many geological problems such as precise tracing of sea level changes, particularly during small scale fluctuations. These are useful data regarding the geodynamic evolution of basin margins and yield profit in oil exploration. Sediment supply, wave-and tidal processes, coastal morphology, and accommodation space generated by eustasy and tectonics govern the highly variable architecture of sedimentary bodies deposited in coastal settings. But these parameters change with time, and erosional surfaces may play a prominent role in areas located towards land. Besides, lateral shift of erosional or even depositional loci very often results in destruction of large parts of the sediment record. Several case studies illustrate some commonly found arrangements of facies and their distinguishing features. The final aim is to get the best results from the sedimentological analysis of coastal units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Setúbal and São Vicente canyons are two major modern submarine canyons located in the southwest Iberian margin of Portugal. Although recognised as Pliocene to Quaternary features, their development during the Tertiary has not been fully understood up to date. A grid of 2D seismic data has been used to characterise the sedimentary deposits of the adjacent flanks to the submarine canyons. The relationship between the geological structure of the margin and the canyon's present location has been investigated. The interpretation of the main seismic units allowed the recognition of three generations of ravinements probably originated after middle Oligocene. Six units grouped in two distinctive seismic sequences have been identified and correlated with offshore stratigraphic data. Seismic Sequence 2 (SS2), the oldest, overlies Mesozoic and upper Eocene deformed units. Seismic Sequence I (SS1) is composed of four different seismic packages separated from SS2 by an erosional surface. The base of the studied sediment ridges is marked by an extensive erosional surface derived from a early/middle Oligocene relative sea-level fall. Deposition in the adjacent area to the actual canyons was reinitiated in late Oligocene in the form of transgressive and channel-fill deposits. A new depositional hiatus is recorded onshore during the Burdigalian, coincident with the unconformity separating SS1 and SS2. This can be correlated with the Arrábida unconformity and with the paroxysmal Burdigalian phase of the Betic domain. Presently, the Setúbal and São Vicente submarine canyons locally cut SS1 and SS2, forming distinctive channels from those recognised on the seismic data. On the upper shelf both dissect highly deformed areas subject to important erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shelves surrounding reefless volcanic ocean islands are formed by surf erosion of their slopes during changing sea levels. Posterosional lava flows, if abundant, can cross the coastal cliffs and fill partially or completely the accommodation space left by erosion. In this study, multibeam bathymetry, high-resolution seismic reflection profiles, and sediment samples are used to characterize the morphology of the insular shelves adjacent to Pico Island. The data show offshore fresh lava flow morphologies, as well as an irregular basement beneath shelf sedimentary bodies and reduced shelf width adjacent to older volcanic edifices in Pico. These observations suggest that these shelves have been significantly filled by volcanic progradation and can thus be classified as rejuvenated. Despite the general volcanic infilling of the shelves around Pico, most of their edges are below the depth of the Last Glacial Maximum, revealing that at least parts of the island have subsided after the shelves formed by surf erosion. Prograding lava deltas reached the shelf edge in some areas triggering small slope failures, locally decreasing the shelf width and depth of their edges. These areas can represent a significant risk for the local population; hence, their identification can be useful for hazard assessment and contribute to wiser land use planning. Shelf and subaerial geomorphology, magnetic anomalies and crustal structure data of the two islands were also interpreted to reconstruct the long-term combined onshore and offshore evolution of the Faial-Pico ridge. The subaerial emergence of this ridge is apparently older than previously thought, i.e., before approximate to 850 ka.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper carried out a chemical investigation of archaeological ceramic artifacts found in archaeological sites with Black Earth (ABE) in the Lower Amazon Region at Cachoeira-Porteira, State of Pará, Brazil. The ceramic artifacts, mostly of daily use, belong to Konduri culture (from 900 to 400 years BP). They are constituted of SiO2, Al2O3, Fe2O3, Na2O and P2O5; SiO2 and Al2O3 together add up to 80 % and indicate influence of acid rocks, transformed into clay minerals basically kaolinite. The relative high contents of P2O5 (2.37 % in average) come out as (Al,Fe)-phosphate, an uncommon fact in primitive red ceramics, but found in some roman and egyptian archaeological sites. The contents of the trace elements are similar or below the Earth's crust average. This chemical composition (except P2O5) detaches saprolite material derived acid igneous rocks or sedimentary ones as the main raw material of the ceramics. The contents of K, Na and Ca represent the feldspars and rock fragments possibly introduced into saprolitic groundmass, indicated by mineralogical studies. The presence of cauixi and cariapé as well as quartz sand was confirmed by optical microscope, SEM analyses and by the high silica contents of ceramic fragments. Phosphorus was possibly incorporated into groundmass during cooking of foods, and ABE soil profile formation developed on yellow Latosols. The raw materials and its tempers (cauixi, or cariapé, feldspar, crushed rocks, old ceramic artifacts and quartz fragments) are found close to the sites and therefore and certainly came from them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Upper Lahul region in the NW Himalaya is located in the transition zone between the High Himalayan Crystalline (HHC) to the SW and the Tethyan Zone sedimentary series to the NE. The tectonic evolution of these domains during the Himalayan Orogeny is the consequence of a succession of five deformation events. An early D1 phase corresponds to synmetamorphic, NE verging folding. This deformation created the Tandi Syncline, which consists of Permian to Jurassic Tethyan metasediments cropping out in the core of a large-scale synformal fold within the HHC paragneiss. This tectonic event is interpreted as related to a NE directed nappe stacking (Shikar Beh Nappe), probably during the late Eocene to the early Oligocene. A subsequent D2a phase caused SW verging folding in the HHC. This deformation is interpreted as contemporaneous with late Oligocene to early Miocene SW directed thrusting along the Main Central Thrust. In the Tethyan Zone, a D2b phase is marked by a decollement thrust, a system of reverse faults, and gentle folds, associated with SW directed tectonic movements. This deformation is related to an imbricate structure, characteristic of a shallow structural level, and developed in the frontal part of a nappe affecting the Tethyan Zone units of SE Zanskar (Nyimaling-Tsarap Nappe). A later D3 phase generated the Chandra Dextral Shear Zone (CDSZ), a large-scale, ductile, dextral strike-slip shear zone, located in the transition zone between the HHC and the Tethyan Himalaya. The CDSZ most likely represents a part of a system of early Miocene extensional and/or dextral, strike-slip shear zones-observed at the HHC-Tethyan Zone contact along the entire Himalaya. A final D4 phase induced large-scale doming and NE:verging back folding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Himalayan orogen is the result of the collision between the Indian and Asian continents that began 55-50 Ma ago, causing intracontinental thrusting and nappe formation. Detailed mapping as well as structural and microfabric analyses on a traverse from the Tethyan Himalaya southwestward through the High Himalayan Crystalline and the Main Central Thrust zone (MCT zone) to the Lesser Himalayan Sequence in the Spiti-eastern Lahul-Parvati valley area reveal eight main phases of deformation, a series of late stage phases and five stages of metamorphic crystallization. This sequence of events is integrated into a reconstruction of the tectonometamorphic evolution of the Himalayan orogen in northern Himachal Pradesh. The oldest phase D-1 is preserved as relies in the High Himalayan Crystalline. Its deformational conditions are poorly known, but the metamorphic evolution is well documented by a prograde metamorphism reaching peak conditions within the upper amphibolite facies. This indicates that D-1 was an important tectonometamorphic event including considerable crustal thickening. The structural, metamorphic and sedimentary record suggest that D-1 most probably represents an early stage of continental collision. The first event clearly attributed to the collision between India and Asia is documented by two converging nappe systems, the NE-verging Shikar Beh Nappe and the SW-verging north Himalayan nappes. The D-2 Shikar Beh Nappe is characterized by isoclinal folding and top-to-the NE shearing, representing the main deformation in the High Himalayan Crystalline. D-2 also caused the main metamorphism in the High Himalayan Crystalline that was of a Barrovian-type, reaching upper amphibolite facies peak conditions. The Shikar Beh Nappe is interpreted to have formed within the Indian crust SW of the subduction zone. Simultaneously with NE-directed nappe formation, incipient subduction of India below Asia caused stacking of the SW-verging north Himalayan Nappes, that were thrust from the northern edge of the subducted continent toward the front of the Shikar Beh Nappe. As a result, the SW-verging folds of the D-3 Main Fold Zone formed in the Tethyan Himalaya below the front of the north Himalayan nappes. D-3 represents the main deformation in the Tethyan Himalaya, associated with a greenschist facies metamorphism. Folding within the Main Fold Zone subsequently propagated toward SW into the High Himalayan Crystalline, where it overprinted the preexisting D-2 structures. After subduction at the base of the north Himalayan nappes, the subduction zone stepped to the base of the High Himalayan Crystalline, where D-3 folds were crosscut by SW-directed D-4 thrusting. During D-4, the Crystalline Nappe, comprising the Main Fold Zone and relies of the Shikar Beh Nappe was thrust toward SW over the Lesser Himalayan Sequence along the 4 to 5 kms thick Main Central Thrust zone. Thrusting was related to a retrograde greenschist facies overprint at the base of the Crystalline Nappe and to pro-grade greenschist facies conditions in the Lesser Himalayan Sequence. Simultaneously with thrusting at the base of the Crystalline Nappe, higher crustal levels were affected by NE-directed D-5 normal extensional shearing and by dextral strike-slip motion, indicating that the high-grade metamorphic Crystalline Nappe was extruded between the low-grade metamorphic Lesser Himalayan Sequence at the base and the north Himalayan nappes at the top. The upper boundary of the Crystalline Nappe is not clearly delimited and passes gradually into the low-grade rocks at the front of the north Himalayan nappes. Extrusion of the Crystalline Nappe was followed by the phase D-6, characterized by large-scale, upright to steeply inclined, NE-verging folds and by another series of normal and extensional structures D-7+D-8 that may be related to ongoing extrusion of the Crystalline Nappe. The late stage evolution is represented by the phases D-A and D-B that indicate shortening parallel to the axis of the mountain chain and by D-C that is interpreted to account for the formation of large-scale domes with NNW-SSE-trending axes, an example of which is exposed in the Larji-Kullu-Rampur tectonic window.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foreland sedimentary rocks from the northern Fars region of Iran contain a record of deformation associated with the Cenozoic collision between Arabia and Eurasia that resulted in formation of the Zagros orogen. The timing of the deformation associated with this event is poorly known. To address this we conducted a study of Miocene foreland sedimentary rocks (19.7-14.8 Ma) of the Chahar-Makan syncline using clast composition, clay mineralogy and low-temperature fission-track dating. The results showed that most of the sedimentary rocks were sourced from ophiolitic rocks. Detrital apatite fission-track (AFT) age signatures of Miocene sedimentary rocks record exhumation in the hanging wall of the Main Zagros Thrust and confirm that the change from underthrusting of the stretched Arabian margin to widespread crustal thickening and deformation in the Zagros region is no younger than 19.7 Ma. A transition from Late Oligocene to Mesozoic-Eocene AFT detrital age signatures between 19.7-16.6 Ma and 16.6-13.8 Ma is interpreted to reflect a possible rearrangement of palaeodrainage distribution that resulted from folding and expansion-uplift of the Zagros-Iranian Plateau region.