975 resultados para Sediment transport.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the transformation of the low tide to the high tide, an exactly inverse phenomenon is occurred and the high tidal delta is formed at the mouth upstream. Increasing the tidal range does not affect the nature of this phenomenon and just change its intensity. In this situation, the inlet will be balance over time. A new relationship between equilibrium cross section and tidal prism for different tidal levels as well as sediment grading has been provided which its results are corresponded with results of numerical modeling. In the combination state, the wave height significantly affects the current and sedimentary pattern such that the wave height dimensionless index (Hw/Ht) determines the dominant parameter (the short period wave or tide) in the inlet. It is notable that in this state, the inlet will be balanced over the time. In order to calculate sedimentary phenomena, each of which are individually determined under solely wave and only tide conditions and then they are added. Estimated values are similar to numerical modeling results of the combination state considering nonlinear terms. Also, it is clear that the wave and tide performance is of meaning in the direct relationship with the water level. The water level change causes variations of the position of the breaking line and sedimentary active area. It changes the current and sedimentary pattern coastward while does not change anything seaward. Based on modeling results of sediment transport due to the wave, tide and their combination, it could be said that the erosion at the mouth due to the wave is less than that due to the wave and tide combination. In these situations, tide and wave-tide combination increase the low tidal and high tidal delta volume, respectively. Hence, tide plays an effective role in changing sedimentary phenomena at the channel and mouth downstream. Whereas, short period and combined waves have a crucial role in varying the morphology and sediment transport coast ward.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of decrease in mean sediment size and weight per square metre along a 54 km reach of the Credit River was found to depend on variations in the channel geometry. The distribution of a specific sediment size consist of: (1) a transport zone; (2) an accumulation zone; and (3) a depletion zone. These zones shift downstream in response to downcurrent decreases in stream competence. Along a .285 km man-made pond, within the Credit River study area, the sediment is also characterized by downstream shifting accumulation zones for each finer clast size. The discharge required to initiate movement of 8 cm and 6 cm blocks in Cazenovia Creek is closely approximated by Baker and Ritter's equation. Incipient motion of blocks in Twenty Mile Creek is best predicted by Yalin's relation which is more efficient in deeper flows. The transport distance of blocks in both streams depends on channel roughness and geometry. Natural abrasion and distribution of clasts may depend on the size of the surrounding sediment and variations in flow competence. The cumulative percent weight loss with distance of laboratory abraded dolostone is defined by a power function. The decrease in weight of dolostone follows a negative exponential. In the abrasion mill, chipping causes the high initial weight loss of dolostone; crushing and grinding produce most of the subsequent weight loss. Clast size was found to have little effect on the abrasion of dolostone within the diameter range considered. Increasing the speed of the mill increased the initial amount of weight loss but decreased the rate of abrasion. The abrasion mill was found to produce more weight loss than stream action. The maximum percent weight loss determined from laboratory and field abrasion data is approximately 40 percent of the weight loss observed along the Credit River. Selective sorting of sediment explains the remaining percentage, not accounted for by abrasion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Moreton Island and several other large siliceous sand dune islands and mainland barrier deposits in SE Queensland represent the distal, onshore component of an extensive Quaternary continental shelf sediment system. This sediment has been transported up to 1000 km along the coast and shelf of SE Australia over multiple glacioeustatic sea-level cycles. Stratigraphic relationships and a preliminary Optically Stimulated Luminance (OSL) chronology for Moreton Island indicate a middle Pleistocene age for the large majority of the deposit. Dune units exposed in the centre of the island and on the east coast have OSL ages that indicate deposition occurred between approximately 540 ka and 350 ka BP, and at around 96±10 ka BP. Much of the southern half of the island has a veneer of much younger sediment, with OSL ages of 0.90±0.11 ka, 1.28±0.16 ka, 5.75±0.53 ka and <0.45 ka BP. The younger deposits were partially derived from the reworking of the upper leached zone of the much older dunes. A large parabolic dune at the northern end of the island, OSL age of 9.90±1.0 ka BP, and palaeosol exposures that extend below present sea level suggest the Pleistocene dunes were sourced from shorelines positioned several to tens of metres lower than, and up to few kilometres seaward of the present shoreline. Given the lower gradient of the inner shelf a few km seaward of the island, it seems likely that periods of intermediate sea level (e.g. ~20 m below present) produced strongly positive onshore sediment budgets and the mobilisation of dunes inland to form much of what now comprises Moreton Island. The new OSL ages and comprehensive OSL chronology for the Cooloola deposit, 100 km north of Moreton Island, indicate that the bulk of the coastal dune deposits in SE Queensland were emplaced between approximately 540 ka BP and prior to the Last Interglacial. This chronostratigraphic information improves our fundamental understanding of long-term sediment transport and accumulation on large-scale continental shelf sediment systems.