966 resultados para Secularization - Religious Transit - Pentecostalism - Assembly of God Religious Identities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major structural components of HIV are synthesized as a 55-kDa polyprotein, Gag. Particle formation is driven by the self-assembly of Gag into a curved hexameric lattice, the structure of which is poorly understood. We used cryoelectron tomography and contrast-transfer-function corrected subtomogram averaging to study the structure of the assembled immature Gag lattice to approximate to 17-angstrom resolution. Gag is arranged in the immature virus as a single, continuous, but incomplete hexameric lattice whose curvature is mediated without a requirement for pentameric defects. The resolution of the structure allows positioning of individual protein domains. High-resolution crystal structures were fitted into the reconstruction to locate protein-protein interfaces involved in Gag assembly, and to identify the structural transformations associated with virus maturation. The results of this study suggest a concept for the formation of nonsymmetrical enveloped viruses of variable sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proper function of the spindle is crucial to the high fidelity of chromosome segregation and is indispensable for tumor suppression in humans. Centrobin is a recently identified centrosomal protein that has a role in stabilizing the microtubule structure. Here we functionally characterize the defects in centrosome integrity and spindle assembly in Centrobin-depleted cells. Centrobin-depleted cells show a range of spindle abnormalities including unfocused poles that are not associated with centrosomes, S-shaped spindles and mini spindles. These cells undergo mitotic arrest and subsequently often die by apoptosis, as determined by live cell imaging. Co-depletion of Mad2 relieves the mitotic arrest, indicating that cells arrest due to a failure to silence the spindle checkpoint in metaphase. Consistent with this, Centrobin-depleted metaphase cells stained positive for BubR1 and BubR1 S676. Staining with a panel of centrosome markers showed a loss of centrosome anchoring to the mitotic spindle. Furthermore, these cells show less cold-stable microtubules and a shorter distance between kinetochore pairs. These results show a requirement of Centrobin in maintaining centrosome integrity, which in turn promotes anchoring of mitotic spindle to the centrosomes. Furthermore, this anchoring is required for the stability of microtubulekinetochore attachments and biogenesis of tension-ridden and properly functioning mitotic spindle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,4-Diazabicyclo[2.2.2]octane (DABCO) forms well-defined co-crystals with 1,2-diiodotetrafluorobenzene (1,2-DITFB), [(1,2-DITFB)2DABCO], and 1,3,5-triiodotrifluorobenzene, [(1,3,5-TITFB)2DABCO]. Both systems exhibited lower-than-expected supramolecular connectivity, which inspired a search for polymorphs in alternative crystallization solvents. In dichloromethane solution, the Menshutkin reaction was found to occur, generating chloride anions and quaternary ammonium cations through the reaction between the solvent and DABCO. The controlled in situ production of chloride ions facilitated the crystallization of new halogen bonded networks, DABCOCH2Cl[(1,2-DITFB)Cl] (zigzag X-bonded chains) and (DABCOCH2Cl)3[(1,3,5-TITFB)2Cl3]CHCl3 (2D pseudo-trigonal X-bonded nets displaying Borremean entanglement), propagating with charge-assisted CICl halogen bonds. The method was found to be versatile, and substitution of DABCO with triethylamine (TEA) gave (TEA-CH2Cl)3[(1,2-DITFB)Cl3]4(H2O) (mixed halogen bond hydrogen bond network with 2D supramolecular connectivity) and TEA-CH2Cl[(1,3,5-TITFB)Cl] (tightly packed planar trigonal nets). The co-crystals were typically produced in high yield and purity with relatively predictable supramolecular topology, particularly with respect to the connectivity of the iodobenzene molecules. The potential to use this synthetic methodology for crystal engineering of halogen bonded architectures is demonstrated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc1/CoIIIPc2. The surface coverage () value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4-CoIITAPc on GC electrode has reached the saturation coverage (s) within 3 h. The s value for the SAM of 4-CoIITAPc on GC electrode was found to be 2.37 1010 mol cm2. Gibbs free energy (Gads) and adsorption rate constant (kad) for the adsorption of 4-CoIITAPc on GC surface were found to be 16.76 kJ mol1 and 7.1 M1 s1, respectively. The possible mechanism for the self-assembly of 4-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from stacking. The contribution of stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hard and soft: Binding of inorganic Pt@Fe3O4 Janus particles to WS2 nanotubes through their Pt or Fe3O4 domains is governed by the difference in Pearson hardness: the soft Pt block has a higher sulfur affinity than the harder magnetite face; thus the binding proceeds preferentially through the Pt face. This binding preference can be reversed by masking the Pt face with an organic protecting group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 814 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of small molecules on a surface depends critically on both moleculesubstrate and intermolecular interactions. We present here a detailed comparative investigation of 1,3,5-benzene tricarboxylic acid (trimesic acid, TMA) on two different surfaces: highly oriented pyrolytic graphite (HOPG) and single-layer graphene (SLG) grown on a polycrystalline Cu foil. On the basis of high-resolution scanning tunnelling microscopy (STM) images, we show that the epitaxy matrix for the hexagonal TMA chicken wire phase is identical on these two surfaces, and, using density functional theory (DFT) with a non-local van der Waals correlation contribution, we identify the most energetically favorable adsorption geometries. Simulated STM images based on these calculations suggest that the TMA lattice can stably adsorb on sites other than those identified to maximize binding interactions with the substrate. This is consistent with our net energy calculations that suggest that intermolecular interactions (TMATMA dimer bonding) are dominant over TMAsubstrate interactions in stabilizing the system. STM images demonstrate the robustness of the TMA films on SLG, where the molecular network extends across the variable topography of the SLG substrates and remains intact after rinsing and drying the films. These results help to elucidate molecular behavior on SLG and suggest significant similarities between adsorption on HOPG and SLG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OHO carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a high-resolution ambient STM study of sulflower (octathio[8]circulene) and selenosulflower (sym-tetraselena-tetrathio[8]circulene) molecules, immobilized in a hydrogen-bonded matrix of trimesic acid (TMA) at the solidliquid interface, are compared with the STM and X-ray structure of separate host and guest 2D and 3D crystals, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquidsolid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular BrBr and BrH bonding. We find that the SS interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4,5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates sticky pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry hostguest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The supramolecular self-assembly of brominated molecules was investigated and compared on Cu(110) and Cu(110)[BOND]O(21) surfaces under ultrahigh vacuum. By using scanning tunnelling microscopy, we show that brominated molecules form a disordered structure on Cu(110), whereas a well-ordered supramolecular network is observed on the Cu(110)[BOND]O(21) surface. The different adsorption behaviors of these two surfaces are described in terms of weakened moleculesubstrate interactions on Cu(110)[BOND]O(21) as opposed to bare Cu(110). The effect of oxygen-passivation is to suppress debromination and it can be a convenient approach for investigating other self-assembly processes on copper-based substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication of assembled nanostructures from the pre-synthesized nanocrystals building blocks through optical means of exciton formation and dissociation. We demonstrate that Li (x) CoO2 nanocrystals assemble to an acicular architecture, upon prolonged exposure to ultraviolet-visible radiation emitted from a 125 W mercury vapor lamp, through intermediate excitation of excitons. The results obtained in the present study clearly show how nanocrystals of various materials with band gaps appropriate for excitations of excitons at given optical wavelengths can be assembled to unusual nanoarchitectures through illumination with incoherent light sources. The disappearance of exciton bands due to Li (x) CoO2 phase in the optical spectrum of the irradiated film comprising acicular structure is consistent with the proposed mechanism of exciton dissociation in the observed light-induced assembly process. The assembly process occurs through attractive Coulomb interactions between charged dots created upon exciton dissociation. Our work presents a new type of nanocrystal assembly process that is driven by light and exciton directed.