964 resultados para Seawater.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between microbial colonization of two kinds of passive metals and ennobling of their corrosion potentials (E-corr) were studied. Two types of passive metal coupons were exposed to natural seawater for about ten days. Under laboratory conditions, all corrosion potentials of the samples ennobled for about 200 mV. Epifluorescence microscopy showed that bacteria adsorption was the main process during about the first day immersion and bacteria reproduced in the following days. The bacteria number increased on the metal surface according to an exponential law and the kinetics of bacteria adsorption at the metal surface during this period was proposed. The ennoblement of E-corr was similar to the increasing bacteria number: E-corr increased quickly during the bacteria adsorption process and increased slowly after biofilms had formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes of corrosion potential (E-corr) of metals immersed in seawater were investigated with electrochemical technology and epifluoresence microscopy. In natural seawater, changes of E-corr were determined by the surface corrosion state of the metal. E-corr of passive metals exposed to natural seawater shifted to noble direction for about 150 mV in one day and it didn't change in sterile seawater. The in-situ observation showed that biofilms settled on the surfaces of passive metals when E-corr moved in noble direction. The bacteria number increased on the metal surface according to exponential law and it was in the same way with the ennoblement of E-corr. The attachment of bacteria during the initial period played an important role in the ennoblement of E-corr and it is believed that the carbohydrate and protein in the biofilm are reasons for this phenomenon. The double layer capacitance (C-dl) of passive metals decreased with time when immersed in natural seawater, while remained almost unchanged in sterile seawater. The increased thickness and reduced dielectric constant of C-dl may be reasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the corrosion of pipeline materials in Seabed Sediment (SBS) environment, weight-loss and electrochemical measurements in saturated sand and mud cells with seawater were performed for a simulation. The used electrochemical measurements included linear polarization resistance (LPR) and potentiodynamic scanning measurement. It was showed that the corrosion rate of mild steel in the present condition was lower than the corrosion rate of other marine environment corrosion zones of it; that the granularity of SBS could affect the corrosion behavior greatly; that with increasing grain size of SBS, the corrosion rate increased. Integrated over the results of the weight loss and polarization curves, the oxygen diffusion (oxygen as a depolarizant agent) mechanism was proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot dip Zn-Al alloy coating performs better than hot dip galvanized coating and 55% Al-Zn-Si coating as well with regard to general seawater corrosion protection. A characterization of the corrosion products on Zn-Al alloy coating immersed in dynamic aerated seawater has been performed mainly based on transmission electron microscopy (TEM) for morphological analysis and X-ray diffraction (XRD) technique for crystalline phase identification. The XRD and TEM analyses showed that the corrosion products mainly were typical nanometer Zn4CO3(OH)(6).H2O, Zn-5(OH)(8)Cl-2 and Zn6Al2CO3(OH)(16). 4H(2)O microcrystals. This probably is connected to the co-precipitation of Zn2+ and Al3+ ions caused by adsorption. Zn-Al alloy coating being suffered seawater attacks, AI(OH)(3) gel was first produced on the coating surface. Zn and Al hydroxides would co-precipitate and form double-hydroxide when the concentration of adsorbed Zn2+ ions by the newly produced gel exceeded the critical degree of supersaturation of the interphase nucleation. However, because the growth of the crystals was too low to keep in step with the nucleation, a layer of nano-crystalline corrosion products were produced on the surface of the coating finally. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria in the anaerobic biofilm on rusted carbon steel immersed in natural seawater were characterized by culturing and molecular biology techniques. Two types of anaerobic bacterium, sulfate-reducing bacteria (SRB) Desulfovibrio caledoniensis and iron-reducing bacteria Clostridium sp. uncultured were found. The compositions of the rust layer were also analyzed and we found that iron oxide and sulfate green rust were the major components. To investigate the corrosion mechanisms, electrochemical impedance spectra was obtained based on the isolated sulfate-reducing bacteria and mixed bacteria cultured from rust layer in laboratory culture conditions. We found that single species produced iron sulfide and accelerated corrosion, but mixed species produced sulfate green rust and inhibited corrosion. The anaerobic corrosion mechanism of steel was proposed and its environmental significance was discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the investigation of diniconzole and triadimefon as chemical corrosion inhibitors for freshly polished copper in synthetic seawater (3.5% NaCl solution). Determination of weight loss, polarization curves, electrochemical impedance spectroscopy (EIS), and SEM, were performed to analyze the inhibiting performance of these compounds. Polarization curves show that they act as mixed-type inhibitors. EIS indicates that an adsorption film of the inhibitors is formed on copper surface. The highest values of inhibition efficiency are respectively, 99.2% and 97.3% at 100 mg/L concentration. Thermodynamic calculation suggests that chemisorptions between the compounds and copper are accordance with Langmuir adsorption isotherm. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot-dipped galvanized zinc and zinc alloy coatings were used as the hot-dipped low alloy zinc coatings (aluminum content less than protective metallic coatings for steel structures in seawater in Chi- or equal to 10 wt%) is equal to or even lower than that of the pure na. Corrosion of the two coatings immersed in sea water in Qingdao zinc sheet, while the performance of the hot-dipped high alloy zinc and Xiamen for 6 years were introduced and analyzed, which pro-coatings is higher than that of the pure zinc sheet. The hot-dipped vides a basis for further development and applications of these coat- high alloy zinc coatings can be further developed for optimal tings in China. Tests proved that the anti-corrosion performance of formance in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water-rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≃300°C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system.