914 resultados para Search and matching
Resumo:
Andrews and Curtis conjectured in 1965 that every balanced presentation of the trivial group can be transformed into a standard presentation by a finite sequence of elementary transformations. Recent computational work by Miasnikov and Myasnikov on this problem has been based on genetic algorithms. We show that a computational attack based on a breadth-first search of the tree of equivalent presentations is also viable, and seems to outperform that based on genetic algorithms. It allows us to extract shorter proofs (in some cases, provably shortest) and to consider the length thirteen case for two generators. We prove that, up to equivalence, there is a unique minimum potential counterexample.
Resumo:
This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.
Resumo:
The research was carried out in the Aviation Division of Dunlop Limited and was initiated as a search for more diverse uses for carbon/carbon composites. An assumed communication model of adoption was refined by introducing the concept of a two way search after making cross industry comparisons of supplier and consumer behaviour. This research has examined methods of searching for new uses for advanced technology materials. Two broad approaches were adopted. First, a case history approach investigated materials that had been in a similar oosition to carbon/carbon to see how other material producing firms had tackled the problem. Second, a questionnaire survey among industrialists examined: the role and identity of material decision makers in different sized firms; the effectiveness of various information sources and channels; and the material adoption habits of different industries. The effectiveness of selected information channels was further studied by monitoring the response to publicity given to carbon/carbon. A flow chart has been developed from the results of this research which should help any material producing firm that is contemplating the introduction of a new material to the world market. Further benefit to our understanding of the innovation and adoption of new materials would accrue from work in the followino areas: "micro" type case histories; understanding more fully the role of product champions or promoters; investigating the phase difference between incremental and radical type innovations for materials; examining the relationship between the adoption rate of new materials and the advance of technology; studying the development of cost per unit function methods for material selection; and reviewing the benefits that economy of scale studies can have on material developments. These are all suggested areas for further work.
Resumo:
This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio.
Resumo:
This paper presents an approach to development of intelligent search system and automatic document classification and cataloging tools for CASE-system based on metadata. The described method uses advantages of ontology approach and traditional approach based on keywords. The method has powerful intelligent means and it can be integrated with existing document search systems.
Resumo:
Mobile advertising is a rapidly growing sector providing brands and marketing agencies the opportunity to connect with consumers beyond traditional and digital media and instead communicate directly on their mobile phones. Mobile advertising will be intrinsically linked with mobile search, which has transported from the internet to the mobile and is identified as an area of potential growth. The result of mobile searching show that as a general rule such search result exceed 160 characters; the dialog is required to deliver the relevant portion of a response to the mobile user. In this paper we focus initially on mobile search and mobile advert creation, and later the mechanism of interaction between the user’s request, the result of searching, advertising and dialog.
Resumo:
Most advertising research has focussed at examining effects of advertising on attitudinal responses or brand preference and choice. However, in a natural environment, the time period between advertising exposure and purchase decision is filled with prepurchase search. Prepurchase external search refers to information search from sources other than memory, prior to making a purchase decision. Usually consumers access only a small subset of available information and base their choice decisions on it. Prepurchase search therefore acts as a filter and, the final choice depends critically on the small subset of potential inputs the consumer notes in the environment and integrates into the decision. Previous research has identified a variety of factors that affect consumers' prepurchase search behavior. However, there is little understanding of how specific advertisements designed by marketers impact consumers' prepurchase search. A marketer would like consumers to search information that reflects favorably on his/her brand. Hence, s/he would attempt to influence the brands and attributes on which consumers seek information prior to making a choice. The dissertation investigates the process by which a particular marketer's advertising influences consumers' search on available brands, i.e., the marketer's brand and other competing brands. The dissertation considers a situation where exposure to advertising occurs prior to seeking information from any other source. Hence, the impact of advertising on subsequent search behavior is the topic of interest. The dissertation develops a conceptual model of advertising effects on brand search and conducts two experiments to test the tenets of this model. Specifically, the dissertation demonstrates that attitudinal responses generated by advertising mediate advertising effects on search attitudes and behaviors. The dissertation goes on to examine how attitudinal responses generated by advertising and subsequent effects on search alter brand preference and choice. ^
Resumo:
Peer reviewed
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
We build a system to support search and visualization on heterogeneous information networks. We first build our system on a specialized heterogeneous information network: DBLP. The system aims to facilitate people, especially computer science researchers, toward a better understanding and user experience about academic information networks. Then we extend our system to the Web. Our results are much more intuitive and knowledgeable than the simple top-k blue links from traditional search engines, and bring more meaningful structural results with correlated entities. We also investigate the ranking algorithm, and we show that the personalized PageRank and proposed Hetero-personalized PageRank outperform the TF-IDF ranking or mixture of TF-IDF and authority ranking. Our work opens several directions for future research.
Resumo:
I investigate the effects of information frictions in price setting decisions. I show that firms' output prices and wages are less sensitive to aggregate economic conditions when firms and workers cannot perfectly understand (or know) the aggregate state of the economy. Prices and wages respond with a lag to aggregate innovations because agents learn slowly about those changes, and this delayed adjustment in prices makes output and unemployment more sensitive to aggregate shocks. In the first chapter of this dissertation, I show that workers' noisy information about the state of the economy help us to explain why real wages are sluggish. In the context of a search and matching model, wages do not immediately respond to a positive aggregate shock because workers do not (yet) have enough information to demand higher wages. This increases firms' incentives to post more vacancies, and it makes unemployment volatile and sensitive to aggregate shocks. This mechanism is robust to two major criticisms of existing theories of sluggish wages and volatile unemployment: the flexibility of wages for new hires and the cyclicality of the opportunity cost of employment. Calibrated to U.S. data, the model explains 60% of the overall unemployment volatility. Consistent with empirical evidence, the response of unemployment to TFP shocks predicted by my model is large, hump-shaped, and peaks one year after the TFP shock, while the response of the aggregate wage is weak and delayed, peaking after two years. In the second chapter of this dissertation, I study the role of information frictions and inventories in firms' price setting decisions in the context of a monetary model. In this model, intermediate goods firms accumulate output inventories, observe aggregate variables with one period lag, and observe their nominal input prices and demand at all times. Firms face idiosyncratic shocks and cannot perfectly infer the state of nature. After a contractionary nominal shock, nominal input prices go down, and firms accumulate inventories because they perceive some positive probability that the nominal price decline is due to a good productivity shock. This prevents firms' prices from decreasing and makes current profits, households' income, and aggregate demand go down. According to my model simulations, a 1% decrease in the money growth rate causes output to decline 0.17% in the first quarter and 0.38% in the second followed by a slow recovery to the steady state. Contractionary nominal shocks also have significant effects on total investment, which remains 1% below the steady state for the first 6 quarters.
Resumo:
We use an augmented version of the UK Innovation Surveys 4–7 to explore firm-level and local area openness externalities on firms’ innovation performance. We find strong evidence of the value of external knowledge acquisition both through interactive collaboration and non-interactive contacts such as demonstration effects, copying or reverse engineering. Levels of knowledge search activity remain well below the private optimum, however, due perhaps to informational market failures. We also find strong positive externalities of openness resulting from the intensity of local interactive knowledge search—a knowledge diffusion effect. However, there are strong negative externalities resulting from the intensity of local non-interactive knowledge search—a competition effect. Our results provide support for local initiatives to support innovation partnering and counter illegal copying or counterfeiting. We find no significant relationship between either local labour quality or employment composition and innovative outputs.
Resumo:
Over one million people lost their lives in the last twenty years from natural disasters like wildfires, earthquakes and man-made disasters. In such scenarios the usage of a fleet of robots aims at the parallelization of the workload and thus increasing speed and capabilities to complete time sensitive missions. This work focuses on the development of a dynamic fleet management system, which consists in the management of multiple agents cooperating in order to accomplish tasks. We presented a Mixed Integer Programming problem for the management and planning of mission’s tasks. The problem was solved using both an exact and a heuristic approach. The latter is based on the idea of solving iteratively smaller instances of the complete problem. Alongside, a fast and efficient algorithm for estimation of travel times between tasks is proposed. Experimental results demonstrate that the proposed heuristic approach is able to generate quality solutions, within specific time limits, compared to the exact one.