314 resultados para Scroll compressors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes measurements of the performance of a research stage operating in isolation and as part of a multistage compressor. It is shown that the stall point and the stalled performance of the stage are properties of the system in which it operates rather than a property of the stage itself. The consequences of this for the estimation of the stall point for compressors and compression systems are discussed. The support that the measurements give to assumptions made by mathematical models which use the concept of an 'underlying axisymmetric' characteristic, are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the aerodynamic design optimisation of turbomachinery blades from a multi-objective perspective. The aim is to improve the performance of a specific stage and eventually of the whole engine. The integrated system developed for this purpose is described. It combines an existing geometry parameterisation scheme, a well-established CFD package and a novel multi-objective variant of the Tabu Search optimisation algorithm. Its performance is illustrated through a case study in which the flow characteristics most important to the overall performance of turbomachinery blades are optimised.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New experimental work is reported on the effects of water ingestion on the performance of an axial flow compressor. The background to the work is the effect that heavy rain has on an aeroengine compressor when operating in a "descent idle" mode, i.e., when the compressor is operating at part speed and when the aeromechanical effects of water ingestion are more important than the thermodynamic effects. Most of our existing knowledge in this field comes from whole engine tests. The current work provides the first known results from direct measurements on a stand-alone compressor. The influence of droplet size on path trajectory is considered both computationally and experimentally to show that most rain droplets will collide with the first row of rotor blades. The water on the blades is then centrifuged toward the casing where the normal airflow patterns in the vicinity of the rotor tips are disrupted. The result of this disruption is a reduction in compressor delivery pressure and an increase in the torque required to keep the compressor speed constant. Both effects reduce the efficiency of the machine. The behavior of the water in the blade rows is examined in detail, and simple models are proposed to explain the loss of pressure rise and the increase in torque. The measurements were obtained in a low speed compressor, making it possible to study the mechanical (increase in torque) and aerodynamic (reduction in pressure rise) effects of water ingestion without the added complication of thermodynamic effects. Copyright © 2008 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behaviour of grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading and the near-casing flow field is then studied using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. Copyright © 2009 Rolls-Royce plc.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operational uncertainties such as throttle excursions, varying inlet conditions and geometry changes lead to variability in compressor performance. In this work, the main operational uncertainties inherent in a transonic axial compressor are quantified to deter- mine their effect on performance. These uncertainties include the effects of inlet distortion, metal expansion, ow leakages and blade roughness. A 3D, validated RANS model of the compressor is utilized to simulate these uncertainties and quantify their effect on polytropic efficiency and pressure ratio. To propagate them, stochastic collocation and sparse pseudospectral approximations are used. We demonstrate that lower-order approximations are sufficient as these uncertainties are inherently linear. Results for epistemic uncertainties in the form of meshing methodologies are also presented. Finally, the uncertainties considered are ranked in order of their effect on efficiency loss. © 2012 AIAA.