982 resultados para Schrodinger Equation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the authors prove that the generalized positive p selfadjoint (GPpS) operators in Banach space satisfy the generalized Schwarz inequality, solve the maximal dissipative extension representation of p dissipative operators in Banach space by using the inequality and introducing the generalized indefinite inner product (GIIP) space, and apply the result to a certain type of Schrodinger operator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the effect of the surface tension is considered carefully in the study of non-propagating solitary waves. The parameter plane of the surface tension and the fluid depth is divided into three regions; in two of them a breather soliton can be produced. In literature the parameters of breather solitons are all in one of the parameter regions. The new region reported here has been confirmed by our experiments. In the third region, the theoretical solution is a kink soliton, but a kind of the non-propagating solitary wave similar to the breather soliton was found in our experiments besides the kink soliton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

非传播孤立波是近年来由中国学者发现的一种独特的孤立水波。本文通过数值求解非传播孤立波目前公认的控制方程-Miles导出的一个带共轭项的非线性立方Schrodinger方程,对非传播孤立波进行数值模拟。本文针对非传播孤立波的各种性质,作了大量的数值计算工作,并与实验观察的现象及人们对非传播孤立波的理论研究结果进行了比较和分析。为了得到稳定的非传播孤立波,本文讨论了Miles方程中的线性阻尼系数a的值,计算表明,线性阻尼a对能否形成稳定的非传播孤立波影响很大,在某些情况下,Laedke等人提出的Miles方程的非传播孤立波解的稳定性条件与我们对Miles方程的数值模拟的结果相当一致,a可在满足稳定性条件的区间内取值,但也发现在某些情况下Laedke等人的稳定性条件与我们的数值模拟不完全符合,证明Laedke等人关于非传播孤立波的稳定性条件只是一个必要条件,而不是充分条件。本文研究了两个非传播孤立波的相互作用,数值模拟表明,两个波的作用模式依赖于系统的参数,只有适当大小的外驱动频率和振幅及线性阻尼a可算出两个非传播孤立波周而复始的相互作用现象来,参数不合适时,两个波可能最终合并为一个非传播孤立波而不再分离,也可能彼此不发生作用,保持各自的独立。对不同的初始扰动及其演化的计算表明,要形成单个稳定的非传播孤立波,则初始扰动必须适当,否则扰动可能消失或发展成多个孤立波。关于形成非传播孤立波所需的外驱动条件,计算结果表明,只有适当大小的外驱动频率和振幅可形成稳定的非传播孤立波,数值结果可以描述驱动频率的上限和驱动振幅的上下限,但无法描述驱动频率的下限。我们的数值模拟工作说明Miles方程确实较好的描述了非传播孤立波的物理模型,该方程可以解释许多关于非传播孤立波的物理特性。但Miles方程无法对非传播孤立波的某些实验现象作出解释,因而有待于进一步研究改进。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.

In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.

In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.

In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.

Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.

In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.

Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis we consider smooth analogues of operators studied in connection with the pointwise convergence of the solution, u(x,t), (x,t) ∈ ℝ^n x ℝ, of the free Schrodinger equation to the given initial data. Such operators are interesting examples of oscillatory integral operators with degenerate phase functions, and we develop strategies to capture the oscillations and obtain sharp L^2 → L^2 bounds. We then consider, for fixed smooth t(x), the restriction of u to the surface (x,t(x)). We find that u(x,t(x)) ∈ L^2(D^n) when the initial data is in a suitable L^2-Sobolev space H^8 (ℝ^n), where s depends on conditions on t.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By means of the numerical solution of time-dependant Schrodinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by k(3) times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

数值求解了一维含时的Schroedinger方程,研究了μ子催化核聚变反应中激光强度和波长对介原子μ^3He电离的影响.发现当激光强度为10^19-10^23W/cm^2量级时,介原子μ^3He有2.7%左右的电离率;当激光强度达到6.0×10^24W/cm^2时,对介原子μ^3He有显著的电离,并且电离率随着激光的强度、波长而递增,进而会有效提高μ子的催化效率.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

79 p.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The transmiss on time and tunneling probability of an electron through a double quantum dot are studied using the transfer matrix technique. The time-dependent Schrodinger equation is applied for a Gaussian wave packet passing through the double quantum clot. The numerical calculations are carried out for a double quantum clot consisting of GaAs/InAs material. We find that the electron tunneling resonance peaks split when the electron transmits through the double quantum dot. The splitting energy increases as the distance between the two quantum dots decreases. The transmission time can be elicited from the temporal evolution of the Gaussian wave packet in the double quantum dot. The transmission time increases quickly as the thickness of tire barrier increases. The lifetime of the resonance state is calculated tram the temporal evolution of the Gaussian-state at the centers of quantum dots.