883 resultados para Scale-free network
Resumo:
We study the optimal control problem of maximizing the spread of an information epidemic on a social network. Information propagation is modeled as a susceptible-infected (SI) process, and the campaign budget is fixed. Direct recruitment and word-of-mouth incentives are the two strategies to accelerate information spreading (controls). We allow for multiple controls depending on the degree of the nodes/individuals. The solution optimally allocates the scarce resource over the campaign duration and the degree class groups. We study the impact of the degree distribution of the network on the controls and present results for Erdos-Renyi and scale-free networks. Results show that more resource is allocated to high-degree nodes in the case of scale-free networks, but medium-degree nodes in the case of Erdos-Renyi networks. We study the effects of various model parameters on the optimal strategy and quantify the improvement offered by the optimal strategy over the static and bang-bang control strategies. The effect of the time-varying spreading rate on the controls is explored as the interest level of the population in the subject of the campaign may change over time. We show the existence of a solution to the formulated optimal control problem, which has nonlinear isoperimetric constraints, using novel techniques that is general and can be used in other similar optimal control problems. This work may be of interest to political, social awareness, or crowdfunding campaigners and product marketing managers, and with some modifications may be used for mitigating biological epidemics.
Resumo:
During the last two decades, analysis of 1/f noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/f noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/f noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/f noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/f noise. The experiments also shown to be useful to test the robustness of 1/f scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/f noise.
Resumo:
In this paper, we studied range-based attacks on links in geographically constrained scale-free networks and found that there is a continuous switching of roles of short-and long-range attacks on links when tuning the geographical constraint strength. Our results demonstrate that the geography has a significant impact on the network efficiency and security; thus one can adjust the geographical structure to optimize the robustness and the efficiency of the networks. We introduce a measurement of the impact of links on the efficiency of the network, and an effective attacking strategy is suggested
Resumo:
We investigate the effect of clusters in complex networks on efficiency dynamics by studying a simple efficiency model in two coupled small-world networks. It is shown that the critical network randomness corresponding to transition from a stagnant phase to a growing one decreases to zero as the connection strength of clusters increases. It is also shown for fixed randomness that the state of clusters transits from a stagnant phase to a growing one as the connection strength of clusters increases. This work can be useful for understanding the critical transition appearing in many dynamic processes on the cluster networks.
Resumo:
In communication networks such as the Internet, the relationship between packet generation rate and time is similar to a rectangle wavefunction due to the rhythm of humans. Thus, we investigate the traffic dynamics on a network with a rectangle wavepacket generation rate. It is found that the critical delivering capacity parameter beta(c) (which separates the congested phase and the free phase) decreases significantly with the duty cycle r of the rectangle wave for package generation. And, in the congested phase, more collective generation of packets (smaller r) is helpful for decreasing the packet aggregation rate. Moreover, it is found that the congested phase can be divided into two regions, i.e., region1 and region2, where the distributions of queue lengths are nonlinear and linear, respectively. Also, the linear expression for the distribution of queue lengths in region2 is obtained analytically. Our work reveals an obvious effect of the rectangle wave on the traffic dynamics and the queue length distribution in the system, which is of essential interest and may provide insights into the designing of work-rest schedules and routing strategies.
Resumo:
A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents indepen- dent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.
Resumo:
La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
Resumo:
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.
Resumo:
The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.
Resumo:
In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient
Resumo:
In this work a study of social networks based on analysis of family names is presented. A basic approach to the mathematical formalism of graphs is developed and then main theoretical models for complex networks are presented aiming to support the analysis of surnames networks models. These, in turn, are worked so as to be drawn leading quantities, such as aggregation coefficient, minimum average path length and connectivity distribution. Based on these quantities, it can be stated that surnames networks are an example of complex network, showing important features such as preferential attachment and small-world character