744 resultados para Saturated fatty acids
Resumo:
Tese de Doutoramento em Ciências Veterinárias, especialidade de Produção Animal
Resumo:
A sensitive method for the determination of free fatty acids using 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-dimidazol-1-yl) ethyl-p-toluenesuIfonate (ANITS) as tagging reagent with fluorescence detection has been developed. ANITS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90 degrees C for 40 min in N,N-dimethylformamide solvent. From the extracts of rape bee pollen samples, 20 free fatty acids were sensitively determined. Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C8 column by HPLC in conjunction with gradient elution. The corresponding derivatives were identified by post-column APCI/MS in positive-ion detection mode. ANITS-fatty acid derivatives gave an intense molecular ion peak at mlz [M+H](+); with MS/MS analysis, the collision-induced dissociation spectra of m/z [M+H](+) produced the specific fragment ions at mlz [M-345](+) and mlz 345.0 (here, m/z 345 is the core structural moiety of the ANITS molecule). The fluorescence excitation and emission wavelengths of the derivatives were lambda(ex) = 250 nm and lambda(em) = 512 nm, respectively. Linear correlation coefficients for all fatty acid derivatives are > 0.9999. Detection limits, at a signal-to-noise ratio of 3 : 1, are 24.76-98.79 fmol for the labeled fatty acids.
Resumo:
Dietary intake of both saturated and trans fatty acids has been associated with an increase in the risk of coronary heart disease (CHD). Evidence comes mainly from controlled dietary experiments with intermediate end points, such as blood lipoproteins, and from observational studies. A few small, randomized controlled trials with clinical end points have been carried out in which saturated fat was replaced with polyunsaturated fat, leading to a reduction in low-density lipoprotein cholesterol and a reduction in CHD risk. However, no such studies exist for trans fatty acids. More high-quality, randomized controlled trials on fatty acids and CHD are required, but public health recommendations to reduce intake of both saturated and trans fatty acids are appropriate based on the current evidence.
Resumo:
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and a-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also. Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly. Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion Ag-2(L-H)(+) where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I) (C).
Resumo:
Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the Surface as carboxylate in a bidentate manner. To explore the effect Of Saturation in the carbon backbone on friction in sliding tribology, we Study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. it is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel Substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.
Resumo:
Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.
Resumo:
Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.
Resumo:
Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise and its activity can be down-regulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of PDH in its active form (PDHa) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n=7) underwent 2 fat loading trials spaced at least 2 weeks apart. Subjects consumed saturated (SFA) or polyunsaturated (PUFA) fat over the course of 5 hours. Following this, participants cycled at 65% VO2 max for 15 min. Muscle biopsies were taken prior to and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 ± 0.07 to 0.54 ± 0.19 mM over 5 hours with SFA and from 0.1 1 ± 0.04 to 0.35 ±0.13 mM with PUFA. PDHa activity was unchanged following fat loading, but increased at the onset of exercise in the SFA trial, from 1 .4 ± 0.4 to 2.2 ± 0.4 /xmol/min/kg wet wt. This effect was negated in the PUFA trial (1 .2 ± 0.3 to 1 .3 ± 0.3 pimol/min/kg wet wt.). PDH kinase (PDK) was unchanged in both trials, suggesting that the attenuation of PDHa activity with PUFA was a result of changes in the concentrations of intramitochondrial effectors, more specifically intramitochondrial NADH or Ca^*. Our findings suggest that attenuated PDHa activity participates in the preferential oxidation of PUFA during moderateintensity exercise.
Resumo:
The fatty acid composition of the total cellular lipids of Choanephora cucurbitarum incubated for 96 hrs on either glucose-ammonium sulfate or malt-weast extract media was determined. The major fatty acids were palmitic, palmitoleic, stearic and linoleic acids. The saturated fatty acid possessing the longest acyl chain was stearate (C 18:0). The presence of glutamic acid (2.0 x 10-1% or 1.36 x la-2M) in either of the above growth media resulted in increase in percent of 1f-linolenic acid, decrease in percent of linoleic ~iCid and appearance of a new series of fatty acid> C ~8 e.g. C ",,,,'V' C2k:O, C26,O. The addition of glutamic acid had no effect on the lipid yield but slightly decreased the degree of unsaturation. Compounds which duplicated the effect of glutamic acid were acetate, malate, citrate, succinate, 0( -ketoglutarate, prOline, -y -aminobutyric acid and glucose (3%) but not aspartic acid or alanine. ~o correlation was found between glutamic acid pool concentration and the presence in the growth medium of those compounds which stimulate long chain fatty acid production. Four hours of incubation with 27 JJ 1-1 glutamate supported the production of long chain fatty acids. This stimulation is inhibited if 272 .u M isophthalic acid is added with 27 AJ M glutamate. But, long chain fatty acids were detected when 27 JJ M eX -ketoglutarate is also present in the incubation mixture. Five hours of incubation with 100 ,Mg/ml of cycloheximide resulted in over 9CY/o inhibition of cytoplasmic :protein synthesise Glutamate (27 .uM) enhanced the synthesis of long chain fatty acids under these conditions. These findings are discussed in an attempt to provide a plausible explanation COmmon to compounds that support the production of long chain fatty acids.
Resumo:
Background: Endothelial dysfunction may be related to adverse effects of some dietary fatty acids (FAs). Although in vitro studies have failed to show consistent findings, this may reflect the diverse experimental protocols employed and the limited range of FAs and end points studied. Aims: To investigate the effect of dietary FA type (saturated, monounsaturated, n-6 and n-3 polyunsaturated fatty acids), concentration, incubation time and cell stimulation state, on a broad spectrum of endothelial inflammatory gene expression. Methods: Using human umbilical vein endothelial cells, with and without stimulation (+/- 10 ng/ml TNF alpha), the effects of arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA), linoleic (LA), oleic (OA) and palmitic acids (PA) (10, 25 and 100 mu M), on the expression of genes encoding a number of inflammatory proteins and transcription factors were assessed by quantitative real time RT-PCR. Results: Individual FAs differentially affect endothelial inflammatory gene expression in a gene-specific manner. EPA, LA and OA significantly up-regulated MCP-1 gene expression compared to AA (p = 0.001, 0.013, 0.008, respectively) and DHA (p < 0.0005, = 0.004, 0.002, respectively). Furthermore, cell stimulation state and FA incubation time significantly influenced reported FA effects on gene expression. Conclusions: The comparative effects of saturated, monounsaturated, n-6 and n-3 polyunsaturated FAs on endothelial gene expression depend on the specific FA investigated, its length of incubation, cell stimulation state and the gene investigated. These findings may explain existing disparity in the literature. This work was funded by the EC, Framework Programme 6 via the LIPGENE project (FOOD-CT-2003-505944).
Resumo:
The present study was designed to examine whether the type of fat ingested in an initial test meal influences the response and density distribution of dietary-derived lipoproteins in the Svedberg flotation rate (Sf)>400, Sf 60 - 400 and Sf 20 - 60 lipoprotein fractions. A single-blind randomized within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester and triacylglycerol responses in each lipoprotein fraction following an initial test meal containing one of the oils and a second standardized test meal. For all dietary oils, late postprandial (300min) concentrations of triacylglycerol and apo B-48 were significantly higher in the Sf 60 - 400 fraction than in the Sf>400 fraction (P<0.02). Significantly greater apo B-48 incremental areas under the curve (IAUCs) were also observed in the Sf 60 - 400 fraction than in the Sf>400 fraction following palm oil, safflower oil and olive oil (P<0.04), with a similar non-significant trend for fish/safflower oil. Olive oil resulted in a significantly greater apo B-48 IAUC in the Sf>400 fraction (P<0.02) than did any of the other dietary oils, as well as a tendency for a higher IAUC in the Sf 60 - 400 fraction compared with the palm, safflower and fish/safflower oils. In conclusion, we have found that the majority of intestinally derived lipoproteins present in the circulation following meals enriched with saturated, polyunsaturated or monounsaturated fatty acids are of the density and size of small chylomicrons and chylomicron remnants. Olive oil resulted in a greater apo B-48 response compared with the other dietary oils following sequential test meals, suggesting the formation of a greater number of small (Sf 60 - 400) and large (Sf>400) apo B-48-containing lipoproteins in response to this dietary oil.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Purpose of review: Vascular function is recognized as an early and integrative marker of cardiovascular disease. While there is consistent evidence that the quantity of dietary fat has significant effects on vascular function, the differential effects of individual fatty acids is less clear. This review summarizes recent evidence from randomly controlled dietary studies on the impact of dietary fatty acids on vascular function, as determined by flow-mediated dilatation (FMD). Recent findings: Critical appraisal is given to five intervention studies (one acute, four chronic) which examined the impact of long-chain n-3 polyunsaturated fatty acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] on FMD. In the acute setting, a high dose of long-chain n-3 polyunsaturated fatty acid (4.9 g per 70 kg man) improved postprandial FMD significantly, compared with a saturated fatty acid-rich meal in healthy individuals. In longer-term studies, there was limited evidence for a significant effect of EPA/DHA on FMD in diseased groups. Summary: The strongest evidence for the benefits of EPA/DHA on vascular function is in the postprandial state. More evidence from randomly controlled intervention trials with foods will be required to substantiate the long-term effects of EPA/DHA, to inform public health and clinical recommendations.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen