371 resultados para Satelites - Jupiter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 +/- 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of M-p = 2.8 +/- 0.3 M-Jup, a radius of R-pl = 1.05 +/- 0.13 R-Jup, a density of approximate to 3 gcm(-3). RV data also clearly reveal a nonzero eccentricity of e = 0.16 +/- 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M-star = 1.14 +/- 0.08 M-circle dot, a radius R-star = 1. 61 +/- 0.18 R-circle dot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Q(p) is more than a few 10(5), a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 ( LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 +/- 0.33 Jupiter masses and 1.30 +/- 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 +/- 0.0011 AU and an orbital period of 2.72474 +/- 0.00014 days. The planetary bulk density is ( 1.36 +/- 0.48) x 10(3) kg m(-3), very similar to the bulk density of Jupiter, and follows an M-1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 +/- 0.09 solar masses and 1.95 +/- 0.2 solar radii. The star and the planet exchange extreme tidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q(*)/k2(*) <= 107.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the public health impact of statin prescribing strategies based on the Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin Study (JUPITER).