945 resultados para Salustio Crispo, Cayo, 83-35 a. C.
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
Dypsis decaryi (Jum.) Beentje & J. Dransf. is an important palm with ornamental commercial value. Although it reproduces sexually, there are no data available as far as what are the factors that affect this species seed germination. The purpose of this work is to study the potential effects of temperature and substrate in Dypsis decaryi seed germination. The research framework is based on randomization, using a 6 X 2 factorial schema (six different temperatures, 25 degrees C, 30 degrees C, 35 degrees C, 20-30 degrees C, 25-35 degrees C and room temperature, combined with two types of substratum, sand and vermiculite) with 5 repetitions of 20 seeds. The researcher made daily records on the number of germinated seeds, and the criteria used was protusion of the germination plug. After 35 days data become stable. The Index of Germination Speed (IVG) and germination percentage were then calculated (data were converted to sen). The averages for these two indexes were compared using the Scott-Knott method with a probability of 5%. The data show that the higher percentages of germination were obtained with a sand substratum at temperatures of 25 degrees C (86%), 25-35 degrees C (92%) and lab room temperature (93%), and with a vermiculite substratum, at temperatures of 25 degrees C (76%), 30 degrees C (83%), 20-30 degrees C (87%), 25-35 degrees C (80%) and room temperature (91%). The seeds germinated sooner in the lab environment, for both substrates. The percentage of germination at 35 degrees C was markedly lower, both on sand (21%) and vermiculite (38%). In this case, the seeds took longer to germinate and germination was not uniform.
Resumo:
The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Neste trabalho, foi estudado o comportamento reológico da polpa de pitanga na faixa de temperatura de pasteurização de 83 a 97 °C. Os resultados indicaram que a polpa apresentou comportamento pseudoplástico e o modelo de Herschel-Bulkley foi considerado o mais adequado para representar o comportamento reológico do produto nas temperaturas estudadas. Os Ãndices de comportamento de fluido (n) variaram na faixa de 0,448 a 0,627. O efeito da temperatura sobre a viscosidade aparente pôde ser descrito pela equação análoga à de Arrenhius, observando-se a diminuição da viscosidade aparente da polpa de pitanga com o aumento da temperatura.
Resumo:
Background: The use of all by-products of bovine slaughter is of high economic importance for the industries of products of animal origin. Among these products, fat has an important role, once fat rendering may generate several different products, such as protein material that may be used in the manufacture of meat products. However, in spite of the importance that the use of all by-products has for the economic balance of the industry, there are no reports on their use in Brazil, or studies that supply data on microbiological and physical-chemical local standards for this protein. Thus, the objective of this study was to evaluate microbiological and physical-chemical characteristics of protein material obtained from fat rendering, as well as to provide support for companies to use fat rendering to generate protein material, adding value to industrialized meat products.Materials, Methods & Results: The experimental production of edible protein obtained of fat rendering was conducted in slaughterhouse with supervision of the Brazilian Ministry of Agriculture, Livestock and Food Supply. Protein material was obtained in a continuous, humid heat system at high temperatures. Fat scraps containing protein were ground and cooked at high temperature (85 degrees C), and placed in a three phase decanter centrifuge. After centrifugation, protein material was ground again and packed. Samples were collected from 15 batches of protein material, and the following microbiological analyses were carried out: counts of aerobic mesophilic and psychrotrophic microorganisms, coliforms at 35 degrees C, Escherichia coli, sulfite-reducing Clostridium, and Staphylococcus aureus, besides presence or absence of Salmonella and Listeria monocytogens. The following physical-chemical analyses were also carried out: protein, total lipid, moisture, ash, carbohydrate, and energy content. Mean counts of mesophiles, psychrotrophs, and coliforms at 35 degrees C were 4.17; 3.69 and 1.87 (log CFU/g), respectively. Levels of protein, total lipids, moisture, ashes and carbohydrates were 27.50; 7.83; 63.88%; 0.24%; and 0.55%, respectively, and energy content was 182.63 kcal/100g.Discussion: Results of microbiological analyses demonstrated that, although low, the final product showed to be contaminated. Contamination that occurred during the second grinding procedure may be an explanation for these bacterial counts. Also, the temperature used for fat fusion was not enough to eliminate thermoduric microorganisms. However, even with the presence of indicator microorganisms in the samples, none was contaminated by E. coli, sulfite-reducing Clostridium, S. aureus, Salmonella or L. monocytogenes. Physical-chemical analyses showed that the product had adequate nutritional quality. Based on these results, it was possible to conclude that protein material obtained in fat rendering showed characteristics that enable the use of this product as raw material for processed meat products. Besides, the present study was the first one to present scientific results in relation to edible by-products obtained in fat rendering, supplying important information for slaughterhouses and meat-processing plants. The study also produced relevant data on the innocuousness of the product, which may be used to guide decision-making of health inspectors.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
ICCU,