967 resultados para SUSTAINABLE AGRICULTURE
Resumo:
[EN] The concept of sustainability when referring to food production rests, in general, on 3 main aspects: 1) respect for the environment; 2) economic and social benefits for all involved in production; and 3) production of sufficient quantity of quality food at an accessible price. In this contribution we focus on the main aspects of the traditional sheep's milk and cheese production (under the Denomination of Origin Idiazabal Cheese) in the Basque Country that contribute primarily to its sustainability. It is based on the local latxa or carranzana breeds of sheep, adapted to the mountainous terrain. The sheepherder takes advantage of local resources to reduce management costs by combining indoor dry forage and concentrates with outdoor grazing throughout lactation, according to local pasture availability, and thus avoiding having to buy large amounts of feed. This system facilitates recycling of manure, fertilising pastures and forest at the same time. Use of local breeds helps maintain biodiversity of sheep breeds. Cheese is produced industrially (44.5% of the total cheese produced in 2008) from milk of many flocks, or artisanally (38.3%) by the sheepherders with the milk from their own flocks. Transforming their own milk into cheese is advantageous for the following reasons: 1) higher economic returns as compared to selling the milk to cheese factories because cheese price directly sold to consumers is more competitive than industrial cheese sold in supermarkets; 2) increases the value of women's work (over 80% of the cheese makers are women) in the community and their self-esteem; 3) it creates rural jobs and contributes to rural development; 4) we have demonstrated both with experimental and commercial flocks that part-time grazing allows the sheepherder to obtain high yields of milk, and cheese, of high nutritional and functional quality. Currently a less sustainable, intensive sheep's milk production with foreign, imported breeds kept indoors constantly is gaining favour among milk producers because of its perceived higher economic profitability.
Resumo:
As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding), maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping systems involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.
Resumo:
Environmental degradation is a worldwide phenomenon. It is manifested in the clearing of forests, polluted waterways, soil erosion, the loss of biodiversity, the presence of chemicals in the ecosystem and a host of other concerns. Modern agricultural practices have been implicated in much of this degradation. This chapter explores the connections between the form of agricultural production undertaken in advanced nations – so called ‘productivist’ or ‘high-tech’ farming – and environmental degradation. It is argued, first, that the entrenchment of productivist agriculture has placed considerable, and continuing, pressures on the environment and, second, that while there are both new options for a more sustainable agriculture and new policies being proposed to tackle the existing problem, the underlying basis of productivist agriculture remains largely unchallenged. The prediction is that environmental degradation will continue unabated until more dramatic (and possibly less palatable) measures are taken to alter the behaviour of producers and the trajectory of farming and grazing industries throughout the world.
Resumo:
Salinity is a major threat to sustainable agriculture worldwide. Plant NHX exchangers play an important role in conferring salt tolerance under salinity stress. In this study, a vacuolar Na+/H+ antiporter gene VrNHX1 (Genbank Accession No. JN656211.1) from mungbean (Vigna radiata) was introduced into cowpea (Vigna unguiculata) by the Agrobacterium tumefaciens-mediated transformation method. Polymerase chain reaction and Southern blot hybridization confirmed the stable integration of VrNHX1 into the cowpea genome. Comparative expression analysis by semi-quantitative RT-PCR revealed higher expression of VrNHX1 in transgenic cowpea plants than wild-type. Under salt stress conditions, T2 transgenic 35S:VrNHX1 cowpea lines exhibited higher tolerance to 200 mM NaCl treatment than wild-type. Furthermore, T2 transgenic 35S:VrNHX1 lines maintained a higher K+/Na+ ratio in the aerial parts under salt stress and accumulated higher [Na+] in roots than wild-type. Physiological analysis revealed lower levels of lipid peroxidation, hydrogen peroxide and oxygen radical production but higher levels of relative water content and proline, ascorbate and chlorophyll contents in T2 transgenic 35S:VrNHX1 lines.
Resumo:
The term 'food literacy' is increasingly being used to describe the knowledge, skills and behaviours needed to feed yourself. In the last five years the use of this specific term has more than tripled in the research literature. The term is now commonly used in food and nutrition policy(Department of Agriculture Fisheries and Forestries, 2013; Glickman, Parker, Sim, Del Valle Cook, & Miller, 2012; Vandenbroeck, Goossens, & Clemens, 2007) and by a range of different industries, including, health, education and sustainable agriculture (Colatruglio, 2015; Piscopo, 2015; Voget-Kleschin, 2014). This article will look at what has led to the emergence of this term and then go on to define it based on the author's own PhD research which involved two studies, one of food experts and one of 16-25 year olds which aimed to identify the components of food literacy.
Resumo:
Continuous cultivation and cereal cropping of southern Queensland soils previously supporting native vegetation have resulted in reduced soil nitrogen supply, and consequently decreased cereal grain yields and low grain protein. To enhance yields and protein concentrations of wheat, management practices involving N fertiliser application, with no-tillage and stubble retention, grain legumes, and legume leys were evaluated from 1987 to 1998 on a fertility-depleted Vertosol at Warra, southern Queensland. The objective of this study was to examine the effect of lucerne in a 2-year lucerne–wheat rotation for its nitrogen and disease-break benefits to subsequent grain yield and protein content of wheat as compared with continuous wheat cropping. Dry matter production and nitrogen yields of lucerne were closely correlated with the total rainfall for October–September as well as March–September rainfall. Each 100 mm of total rainfall resulted in 0.97 t/ha of dry matter and 26 kg/ha of nitrogen yield. For the March–September rainfall, the corresponding values were 1.26 t/ha of dry matter and 36 kg/ha of nitrogen yield. The latter values were 10% lower than those produced by annual medics during a similar period. Compared with wheat–wheat cropping, significant increases in total soil nitrogen were observed only in 1990, 1992 and 1994 but increases in soil mineralisable nitrogen were observed in most years following lucerne. Similarly, pre-plant nitrate nitrogen in the soil profile following lucerne was higher by 74 kg/ha (9–167 kg N/ha) than that of wheat–wheat without N fertiliser in all years except 1996. Consequently, higher wheat grain protein (7 out of 9 seasons) and grain yield (4 out of 9 seasons) were produced compared with continuous wheat. There was significant depression in grain yield in 2 (1993 and 1995) out of 9 seasons attributed to soil moisture depletion and/or low growing season rainfall. Consequently, the overall responses in yield were lower than those of 50 kg/ha of fertiliser nitrogen applied to wheat–wheat crops, 2-year medic–wheat or chickpea–wheat rotation, although grain protein concentrations were higher following lucerne. The incidence and severity of the soilborne disease, common root rot of wheat caused by Bipolaris sorokiniana, was generally higher in lucerne–wheat than in continuous wheat with no nitrogen fertiliser applications, since its severity was significantly correlated with plant available water at sowing. No significant incidence of crown rot or root lesion nematode was observed. Thus, productivity, which was mainly due to nitrogen accretion in this experiment, can be maintained where short duration lucerne leys are grown in rotations with wheat.
Resumo:
Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region.
Resumo:
Models that implement the bio-physical components of agro-ecosystems are ideally suited for exploring sustainability issues in cropping systems. Sustainability may be represented as a number of objectives to be maximised or minimised. However, the full decision space of these objectives is usually very large and simplifications are necessary to safeguard computational feasibility. Different optimisation approaches have been proposed in the literature, usually based on mathematical programming techniques. Here, we present a search approach based on a multiobjective evaluation technique within an evolutionary algorithm (EA), linked to the APSIM cropping systems model. A simple case study addressing crop choice and sowing rules in North-East Australian cropping systems is used to illustrate the methodology. Sustainability of these systems is evaluated in terms of economic performance and resource use. Due to the limited size of this sample problem, the quality of the EA optimisation can be assessed by comparison to the full problem domain. Results demonstrate that the EA procedure, parameterised with generic parameters from the literature, converges to a useable solution set within a reasonable amount of time. Frontier ‘‘peels’’ or Pareto-optimal solutions as described by the multiobjective evaluation procedure provide useful information for discussion on trade-offs between conflicting objectives.
Resumo:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6 - 13.2 kg/ha. 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2 - 7.0 kg/ha per 100mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25 - 40% compared with that of unfertilised wheat. Stored water supplies after pasture were < 134mm (< 55% of plant available water capacity); for most assay crops water storages were 67 - 110 mm, an equivalent wet soil depth of only 0.3 - 0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture - wheat rotation.
Resumo:
Assessing the sustainability of crop and soil management practices in wheat-based rotations requires a well-tested model with the demonstrated ability to sensibly predict crop productivity and changes in the soil resource. The Agricultural Production Systems Simulator (APSIM) suite of models was parameterised and subsequently used to predict biomass production, yield, crop water and nitrogen (N) use, as well as long-term soil water and organic matter dynamics in wheat/chickpea systems at Tel Hadya, north-western Syria. The model satisfactorily simulated the productivity and water and N use of wheat and chickpea crops grown under different N and/or water supply levels in the 1998-99 and 1999-2000 experimental seasons. Analysis of soil-water dynamics showed that the 2-stage soil evaporation model in APSIM's cascading water-balance module did not sufficiently explain the actual soil drying following crop harvest under conditions where unused water remained in the soil profile. This might have been related to evaporation from soil cracks in the montmorillonitic clay soil, a process not explicitly simulated by APSIM. Soil-water dynamics in wheat-fallow and wheat-chickpea rotations (1987-98) were nevertheless well simulated when the soil water content in 0-0.45 m soil depth was set to 'air dry' at the end of the growing season each year. The model satisfactorily simulated the amounts of NO3-N in the soil, whereas it underestimated the amounts of NH 4-N. Ammonium fixation might be part of the soil mineral-N dynamics at the study site because montmorillonite is the major clay mineral. This process is not simulated by APSIM's nitrogen module. APSIM was capable of predicting long-term trends (1985-98) in soil organic matter in wheat-fallow and wheat-chickpea rotations at Tel Hadya as reported in literature. Overall, results showed that the model is generic and mature enough to be extended to this set of environmental conditions and can therefore be applied to assess the sustainability of wheat-chickpea rotations at Tel Hadya.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha-1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination. The study on a commercial cashew plantation at Dimbulah, Australia, investigated the effect of N rate and timing on cashew growth, nut production, N leaching and soil chemical properties over five growth cycles (1995-1999). Nitrogen was applied during the main periods of vegetative (December-April) and reproductive (June-October) growth. Commercial NIS yields (up to 4.4 t ha-1 from individual trees) that exceeded the economic threshold of 2.8 t ha-1 were achieved. The yield response was mainly determined by canopy size as mean nut weight, panicle density and nuts per panicle were largely unaffected by N treatments. Nitrogen application confined to the main period of vegetative growth (December-April) produced a seasonal growth pattern that corresponded most consistently with highest NIS yield. This N timing also reduced late season flowering and undesirable post-November nut drop. Higher yields were not produced at N rates greater than 17 g m-2 of canopy surface area (equating to 210 kg N ha-1 for mature size trees). High yields were attained when N concentrations in Mveg leaves in May-June were about 2%, but this assessment occurs at a time when it is not feasible to correct N deficiency. The Mflor leaf of the preceding November, used in conjunction with the Mveg leaf, was proposed as a diagnostic tool to guide N rate decisions. Leaching of nitrate-N and acidification of the soil profile was recorded to 0.9 m. This is an environmental and sustainability hazard, and demonstrates that improved methods of N management are required.
Resumo:
This project will refine the Savanna Plan program to better promote sustainable grazing practices across the northern rangelands, further engage the beef industry and investigate and develop Savanna Plan's potential to provide practical tools for carbon sequestration on pastoral properties across northern Australia.
Resumo:
Making More from Sheep (MMfS) is a majority market extension program funded by Meat & Livestock Australia (MLA) and Australian Wool Innovation (AWI). Phase II of MMfS commenced in Queensland with a business planning process in October 2010 and delivery from November 2010 until November 2013. Mr Tony Hamilton of the Department of Agriculture, Fisheries and Forestry (DAFF) was initially the State Coordinator with responsibility for planning, project implementation, monitoring and evaluation. He was replaced by Ms Nicole Sallur from DAFF towards the end of the project. Delivery involving partner organisations provided best practice management information and tools to sheep producers with target Key Performance Indicators (KPI’s) exceeded across all three tiers of engagement category. 31 events were delivered to 551 participants. Satisfaction and value scores averaged across all events measured 8.7 and 8.2 respectively. Operational recommendations have been included in the report.
Resumo:
Sustaining and Growing Landcare Systems in the Philippines and Australia.