993 resultados para SUPEROXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:

Increased superoxide anion production increases oxidative stress and reduces nitric oxide bioactivity in vascular disease states. NAD(P)H oxidase is an important source of superoxide in human blood vessels, and some studies suggest a possible association between polymorphisms in the NAD(P)H oxidase CYBA gene and atherosclerosis; however, no functional data address this hypothesis. We examined the relationships between the CYBA C242T polymorphism and direct measurements of superoxide production in human blood vessels.

METHODS AND RESULTS:

Vascular NAD(P)H oxidase activity was determined in human saphenous veins obtained from 110 patients with coronary artery disease and identified risk factors. Immunoblotting, reverse-transcription polymerase chain reaction, and DNA sequencing showed that p22phox protein, mRNA, and 242C/T allelic variants are expressed in human blood vessels. Vascular superoxide production, both basal and NADH-stimulated, was highly variable between patients, but the presence of the CYBA 242T allele was associated with significantly reduced vascular NAD(P)H oxidase activity, independent of other clinical risk factors for atherosclerosis.

CONCLUSIONS:

Association of the CYBA 242T allele with reduced NAD(P)H oxidase activity in human blood vessels suggests that genetic variation in NAD(P)H oxidase components may play a significant role in modulating superoxide production in human atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative, non-spore-forming bacillus and a member of the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly in phagocytic cells and can produce at least one superoxide dismutase (SOD). The inability of O2- to cross the cytoplasmic membrane, coupled with the periplasmic location of Cu,ZnSODs, suggests that periplasmic SODs protect bacteria from superoxide that has an exogenous origin (for example, when cells are faced with reactive oxygen intermediates generated by host cells in response to infection). In this study, we identified the sodC gene encoding a Cu,ZnSOD in B. cenocepacia and demonstrated that a sodC null mutant was not sensitive to a H2O2, 3-morpholinosydnonimine, or paraquat challenge but was killed by exogenous superoxide generated by the xanthine/xanthine oxidase method. The sodC mutant also exhibited a growth defect in liquid medium compared to the parental strain, which could be complemented in trans. The mutant was killed more rapidly than the parental strain was killed in murine macrophage-like cell line RAW 264.7, but killing was eliminated when macrophages were treated with an NADPH oxidase inhibitor. We also confirmed that SodC is periplasmic and identified the metal cofactor. B. cenocepacia SodC was resistant to inhibition by H2O2 and was unusually resistant to KCN for a Cu,ZnSOD. Together, these observations establish that B. cenocepacia produces a periplasmic Cu,ZnSOD that protects this bacterium from exogenously generated O2- and contributes to intracellular survival of this bacterium in macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.

RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.

INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.