984 resultados para SUB-MICROVOLT RESPONSES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have suggested that polymorphism in the serotonin transporter gene (5-HTTLPR) influences responses to serotonergic manipulation, with opposite effects in patients recovered from depression (rMDD) and controls. Here we sought to clarify the neurocognitive mechanisms underpinning these surprising results. Twenty controls and 23 rMDD subjects completed the study; functional magnetic resonance imaging (fMRI) and genotype data were available for 17 rMDD subjects and 16 controls. Following tryptophan or sham depletion, subjects performed an emotional-processing task during fMRI. Although no genotype effects on mood were identified, significant genotype(∗)diagnosis(∗)depletion interactions were observed in the hippocampus and subgenual cingulate in response to emotionally valenced words. In both regions, tryptophan depletion increased responses to negative words, relative to positive words, in high-expression controls, previously identified as being at low-risk for mood change following this procedure. By contrast, in higher-risk low-expression controls and high-expression rMDD subjects, tryptophan depletion had the opposite effect. Increased neural responses to negative words following tryptophan depletion may reflect an adaptive mechanism promoting resilience to mood change following perturbation of the serotonin system, which is reversed in sub-groups vulnerable to developing depressive symptoms. However, this interpretation is complicated by our failure to replicate previous findings of increased negative mood following tryptophan depletion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the retinal microcirculation are associated with hypertension and predict cardiovascular mortality. There are few data describing the impact of antihypertensive therapy on retinal vascular changes. This substudy of the Anglo-Scandinavian Cardiac Outcomes Trial compared the effects of an amlodipine-based regimen (373 patients) with an atenolol-based regimen (347 patients) on retinal microvascular measurements made from fundus photographs. The retinal photographs were taken at a stage in the trial when treatments were stable and blood pressure was well controlled. Amlodipine-based treatment was associated with a smaller arteriolar length:diameter ratio than atenolol-based treatment (13.32 [10.75 to 16.04] versus 14.12 [11.27 to 17.81], median [interquartile range]; P<0.01). The association remained significant after adjustment for age, sex, cholesterol, systolic and diastolic blood pressures, body mass index, smoking, and statin treatment. This effect appeared to be largely attributable to shorter retinal arteriolar segment lengths in the amlodipine-treated group and is best explained by the vasodilator effects of amlodipine causing the visible emergence of branching side vessels. Photographic assessment of the retinal vascular network may be a useful approach to evaluating microvascular structural responses in clinical trials of antihypertensive therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of aseasonal lowland dipterocarp forest in Borneo is influenced by perturbation from droughts. These events might be increasing in frequency and intensity in the future. This paper describes drought-affected dynamics between 1986 and 2001 in Sabah, Malaysia, and considers how it is possible, reliably and accurately, to measure both coarse- and fine-scale responses of the forest. Some fundamental concerns about methodology and data analysis emerge. In two plots forming 8 ha, mortality, recruitment, and stem growth rates of trees ≥10 cm gbh (girth at breast height) were measured in a ‘pre-drought’ period (1986–1996), and in a period (1996–2001) including the 1997–1998 ENSO-drought. For 2.56 ha of subplots, mortality and growth rates of small trees (10–<50 cm gbh) were found also for two sub-periods (1996–1999, 1999–2001). A total of c. 19 K trees were recorded. Mortality rate increased by 25% while both recruitment and relative growth rates increased by 12% for all trees at the coarse scale. For small trees, at the fine scale, mortality increased by 6% and 9% from pre-drought to drought and on to ‘post-drought’ sub-periods. Relative growth rates correspondingly decreased by 38% and increased by 98%. Tree size and topography interacted in a complex manner with between-plot differences. The forest appears to have been sustained by off-setting elevated tree mortality by highly resilient stem growth. This last is seen as the key integrating tree variable which links the external driver (drought causing water stress) and population dynamics recorded as mortality and recruitment. Suitably sound measurements of stem girth, leading to valid growth rates, are needed to understand and model tree dynamic responses to perturbations. The proportion of sound data, however, is in part determined by the drought itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961-1990) upper temperature limit of the species by 5-7°C (July means). Annual precipitation during this natural period was comparable to today (>700-800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000-115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5-7°C, as long as precipitation does not fall below 700-800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the effects of elevated CO2 concentration and seawater acidity on inorganic carbon acquisition, photoinhibition and photoprotection as well as growth and respiration in the marine diatom Thalassiosira pseudonana. After having grown under the elevated CO2 level (1000 µatm, pH 7.83) at sub-saturating photosynthetically active radiation (PAR, 75 µmol photons/m**2/s) for 20 generations, photosynthesis and dark respiration of the alga increased by 25% (14.69 ± 2.55 fmol C/cell/h) and by 35% (4.42 ± 0.98 fmol O2/cell/h), respectively, compared to that grown under the ambient CO2 level (390 µatm, pH 8.16), leading to insignificant effects on growth (1.09 ± 0.08 (1/d))v 1.04 ± 0.07 (1/d)). The photosynthetic affinity for CO2 was lowered in the high-CO2 grown cells, reflecting a down-regulation of the CO2 concentrating mechanism (CCM). When exposed to an excessively high level of PAR, photochemical and non-photochemical quenching responded similarly in the low- and high-CO2 grown cells, reflecting that photoinhibition was not influenced by the enriched level of CO2. In T. pseudonana, it appeared that the energy saved due to the down-regulated CCM did not contribute to any additional light stress as previously found in another diatom Phaeodactylum tricornutum, indicating differential physiological responses to ocean acidification between these two diatom species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steep environmental gradients of mountain ecosystems over short distances reflect large gradients of several climatic parameters and hence provide excellent possibilities for ecological research on the effects of environmental change. To gain a better understanding of the dynamics of abiotic and biotic parameters of mountain ecosystems, long-term records are required since permanent plots in mountain regions cover in the best case about 50 - 70 years. In order to extend investigations of ecological dynamics beyond these temporal limitations of permanent plots, paleoecological approaches can be used if the sampling resolution can be adapted to ecological research questions, e.g. a sample every 10 years. Paleoecological studies in mountain ecosystems can provide new ecological insights through the combination of different spatial and temporal scales. [f we thus improve our understanding of processes across both steep environmental gradients and different time scales, we may be able to better estimate ecosystem responses to current and future environmental change (Ammann et al. 1993; Lotter et al. 1997). The complexity of ecological interactions in mountain regions forces us to concentrate on a number of sub-systems - without losing sight of the wider context. Here, we summarize a few case studies on the effects of Holocene climate change and disturbance on the vegetation of the Western Alps. To categorize the main response modes of vegetation to climatic change and disturbance in the Alps we use three classes of ecological behaviour: "resilience", "adjustment", and "vulnerability", We assume a resilient (or elastic) behaviour if vegetation is able to recover to its former state, regaining important ecosystem characteristics, such as floristic composition, biodiversity, species abundances, and biomass (e.g. Küttel 1990; Aber and Melillo 199 1). Conversely, vegetation displacements may occur in response to climatic change and/or disturbance. In some cases, this may culminate in irreversible large-scale processes such as species and/or community extinctions. Such drastic developments indicate high ecosystem vulnerability (or inelasticity or instability, for detailed definitions see Küttel 1990; Aber and Melillo 199 1) to climatic change and/or disturbance. In this sense, the "vulnerability" (or instability) of an ecosystem is expressed by the degree of failure to recover to the original state before disturbance and/or climatic change. Between these two extremes (resilience vs. vulnerability), ecosystem adjustments to climatic change and/or disturbance may occur, including the appearance of new and/or the disappearance of old species. The term "adjustment" is hence used to indicate the response of vegetational communities, which adapted to new environmental conditions without losing their main character. For forest ecosystems, we assume vegetational adjustments (rather than vulnerability) if the dominant (or co-dominant) tree species are not outnumbered or replaced by formerly unimportant plant species or new invaders. Adaptation as a genetic process is not discussed here and will require additional pbylogeographical studies (that incorporate the analysis of ancient DNA) in order to fully understand the distributions of ecotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The astrogliotic responses of the CCF-STTG1, U251-MG, and U373-MG human astrocytoma lines were determined after exposure to ethanol, trimethyltin chloride (TMTC), and acrylamide over 4, 16, and 24 h. Basal glial fibrillary acidic protein (GFAP) expression in the U-251MG and U373-MG cells was 10-fold greater than the CCF-STGG1 line. Ethanol treatment over 24 h, but not at 4 and 16 h, resulted in significant increases in GFAP in all three glioma lines at sub-cytotoxic levels; the GFAP responses in the CCF-STTG1 line were the most sensitive, as concentrations of 0.1 and 1 mM led to increases in GFAP expression compared with control of 56.8 ± 15.7 and 58.9 ± 11.5%, respectively (P < 0.05). Treatment with TMTC (1 μM) over 4 h showed elevated GFAP expression in the U251-MG cell line to 28.0 ± 15.7% above control levels (P < 0.01), but not in the other U373-MG or CCF-STTG1 cells. At 4 h, MTT turnover was markedly increased compared with control, particularly in the U373-MG line at concentrations as low as 1 μM (17.1 ± 2.3%; P < 0.01). TMTC exposure over 16 and 24 h resulted in reduction in GFAP expression in all three lines at concentrations; at 24 h incubation, the reduction was >50% (P < 0.01). There were no changes in GFAP expression or MTT turnover in response to acrylamide except at the highest concentration ranges of 10-100 mM. This study underlines the significance of period of exposure, as well as toxin concentration in astrocytoma cellular response to toxic pressure. © 2007 Elsevier Ireland Ltd. All rights reserved.