978 resultados para STROKE VOLUME


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective - To evaluate plication of the free wall of the left ventricle, which reduces the left ventricular area and volume, as a method to improve the left ventricular systolic function without cardiopulmonary bypass. Animals - 8 mixed-breed adult dogs. Procedure - Dilated cardiomyopathy (DCM) was induced in each dog by administration of doxorubicin (30 mg/m2, IV, q 21 d for 168 days). Two dogs died during induction of cardiomyopathy. Plication surgery was performed in 4 dogs. Two dogs did not ondergo to surgery (control group). Values for cardiac output (CO), 2-dimensional and M-mode echocardiography, arterial blood pressure, electrocardiography, blood cell counts, and serum biochemical analyses were recorded after induction of DCM (baseline) and 1, 2, 7, 15, 21, 30, 60, 90, 120, 150, and 180 days after plication surgery. Ambulatory ECG (Holter) recordings were conducted for 24 hours on the day of surgery. Results - 1 dog died after plication surgery. The remaining dogs undergoing ventricular plication had a significant improvement in CO, ejection fraction, and fractional shortening and reductions of left ventricular area and volume after surgery. Electrocardiographic and Holter recordings revealed premature ventricular complexes, which resolved without treatment during the first week after surgery. Clinical condition of the control dogs declined, and these 2 dogs died approximately 40 days after induction of cardiomyopathy. Conclusions and Clinical Relevance - Plication of the free wall of the left ventricle improved left ventricular systolic function in dogs with doxorubicin-induced cardiomyopathy. Additional studies are needed to evaluate its application in dogs with naturally developing DCM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dilated cardiomyopathy (DCM) is characterized by chamber dilation and cardiac dysfunction. Because of the poor prognosis, models are needed for the investigation of and development of new therapeutic approaches, as well as stem cell therapy. Doxorubicin (DOX), used as chemotherapeutic agent, is reported to be cumulative cardiotoxic causing DCM. The aim of the study was to investigate the onset of systolic dysfunction using echocardiography in rabbits receiving two different doses of DOX (1. mg/kg twice a week and 2. mg/kg once a week). Twenty rabbits were treated with doxorubicin in two different doses for 6. weeks and compared with a control group treated with NaCl 0.9%. The effect of doxorubicin on the myocardium was investigated with histological analysis and scanning electron microscopy of left ventricle (LV), as well as in the interventricular septum (IVS) and right ventricle (RV). The results showed a high mortality rate for rabbits receiving 2. mg/kg once a week. A significant reduction in systolic function was present in animals treated with DOX after 6. weeks, with decreased ejection fraction and shortening fraction. Histology and electron microscopy revealed vacuolization, intracytoplasmic granulation, necrosis and interstitial fibrosis in LV, as well as in the IVS and RV. Doxorubicin induced changes are present in the LV, RV and IVS, and the administration at the dose of 1. mg/kg twice a week for only 6. weeks is safe and sufficient to induce DCM in rabbits. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Pregnancy and arterial hypertension (AH) have a prohypertrophic effect on the heart. It is suspected that the 2 conditions combined cause disproportionate myocardial hypertrophy. We sought to evaluate myocardial hypertrophy (LVH) and left ventricular function in normotensive and hypertensive women in the presence or absence of pregnancy.METHODS This prospective cross-sectional study included 193 women divided into 4 groups: hypertensive pregnant (HTP; n = 57), normotensive pregnant (NTP; n = 47), hypertensive nonpregnant (HTNP; n = 41), and normotensive nonpregnant (NTNP; n = 48). After clinical and echocardiographic evaluation, the variables were analyzed using 2-way analysis of variance with pregnancy and hypertension as factors. Left ventricular mass (LVM) was compared using nonparametric analysis of variance and Dunn′s test. Predictors of LVH and diastolic dysfunction were analyzed using logistic regression (significance level, P < 0.05).RESULTS Myocardial hypertrophy was independently associated with hypertension (odds ratio (OR) = 11.1, 95% confidence interval (CI) = 3.2-38.5; P < 0.001) and pregnancy (OR = 6.1, 95% CI = 2.6-14.3; P < 0.001) in a model adjusted for age and body mass index. Nonpregnant women were at greater risk of LVH in the presence of AH (OR = 25.3, 95% CI = 3.15-203.5; P = 0.002). The risk was additionally increased in hypertensive women during pregnancy (OR = 4.3, 95% CI = 1.7-10.9; P = 0.002) in the model adjusted for stroke volume and antihypertensive medication. Although none of the NTNP women presented with diastolic dysfunction, it was observed in 2% of the NTP women, 29% of the HTNP women, and 42% of the HTP women (P < 0.05).CONCLUSIONS Hypertension and pregnancy have a synergistic effect on ventricular remodeling, which elevates a woman's risk of myocardial hypertrophy. © 2013 © American Journal of Hypertension, Ltd 2013. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Acute normovolemic hemodilution (ANH) is an alternative to blood transfusion in surgeries involving blood loss. This experimental study was designed to evaluate whether pulse pressure variation (PPV) would be an adequate tool for monitoring changes in preload during ANH, as assessed by transesophageal echocardiography. Methods. Twenty-one anesthetized and mechanically ventilated pigs were randomized into three groups: CTL (control), HES (hemodilution with 6% hydroxyethyl starch at a 1:1 ratio) or NS (hemodilution with saline 0.9% at a 3:1 ratio). Hemodilution was performed in animals of groups NS and HES in two stages, with target hematocrits 22% and 15%, achieved at 30-minute intervals. After two hours, 50% of the blood volume withdrawn was transfused and animals were monitored for another hour. Statistical analysis was based on ANOVA for repeated measures followed by multiple comparison test (P<0.05). Pearson's correlations were performed between changes in left ventricular end-diastolic volume (LVEDV) and PPV, central venous pressure (CVP) and pulmonary artery occlusion pressure (PAOP). Results. Group NS received a significantly greater amount of fluids during ANH (NS, 900 +/- 168 mL vs. HES, 200 +/- 50 mL, P<0.05) and presented greater urine output (NS, 2643 +/- 1097mL vs. HES, 641 +/- 338mL, P<0.001). Significant decreases in LVEDV were observed in group NS from completion of ANH until transfusion. In group HES, only increases in LVEDV were observed, at the end of ANH and at transfusion. Such changes in LVEDV (Delta LVEDV) were better reflected by changes in PPV (Delta PPV, R=-0.62) than changes in CVP (Delta CVP R=0.32) or in PAOP (Delta PAOP, R=0.42, respectively). Conclusion. Changes in preload during ANH were detected by changes in PPV. Delta PPV was superior to Delta PAOP and Delta CVP to this end. (Minerva Anestesiol 2012;78:426-33)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature characterized by vasoconstriction and vascular remodeling leading to a progressive increase in pulmonary vascular resistance (PVR). It is becoming increasingly recognized that it is the response of the right ventricle (RV) to the increased afterload resulting from this increase in PVR that is the most important determinant of patient outcome. A range of hemodynamic, structural, and functional measures associated with the RV have been found to have prognostic importance in PAH and, therefore, have potential value as parameters for the evaluation and follow-up of patients. If such measures are to be used clinically, there is a need for simple, reproducible, accurate, easy-to-use, and noninvasive methods to assess them. Cardiac magnetic resonance imaging (CMRI) is regarded as the "gold standard" method for assessment of the RV, the complex structure of which makes accurate assessment by 2-dimensional methods, such as echocardiography, challenging. However, the majority of data concerning the use of CMRI in PAH have come from studies evaluating a variety of different measures and using different techniques and protocols, and there is a clear need for the development of standardized methodology if CMRI is to be established in the routine assessment of patients with PAH. Should such standards be developed, it seems likely that CMRI will become an important method for the noninvasive assessment and monitoring of patients with PAH. (C) 2012 Elsevier Inc. All rights reserved. (Am J Cardiol 2012;110[suppl]:25S-31S)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Introduction Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital. Methods Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading. Results Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I. Conclusion Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital. Trial registration NCT00479011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early Diagnosis of Miocardial Dysfunction in Patients with Hematological Malignancies Submitted to Chemotherapy. Preliminary Background: Considering the current diagnostic improvements and tl1erapeutic approaches, patients witl 1 cancer can now be healed or keep the disease under control, still, the chemotherapy may cause heart damage, evolving to Congestive Heart Failure. Recognition of those changes increases the chances of control the endpoints; hence, new parameters of cardiac and fluid mechanics analysis have been used to assess the myocardial function, pursuing an earlier diagnosis of the cardiac alterations. This study aimed to detect early cardiac dysfunction consequently to chemotherapy in patients with hematological malignancies (HM). Methods: Patients with leukemia and lymphoma, submitted to chemotherapy, without knowing heart diseases were studied. Healthy volunteers served as the control group. Conventional 2DE parameters of myocardial function were analyzed. The peak global longitudinal, circumferential and radial left ventricular (LV) strain were deternined by 2D and 3D speckle tracking (STE); peak area strain measured by 3D STE and LV torsionn, twisting rate, recoil / recoil rate assessed by 2D STE. The LV vortex formation time (VFT) during the rapid diastolic filling was estimated by the 2D mitral valve (MV) planimetry and Pulsed Doppler LV inflow by: VFT- 4(1-β) / π x α3 x LVEF Where 1- β is the E wave contribution to the LV stroke volume and α3 is a volumetric variable related to the MV area. The statistical level was settled on 5%. Results: See Table. Conclusion: Despite the differences between the two groups concerning the LVESV, LVEF and E´, those parameters still are in the normal range when considering the patients submitted to chemotherapy; thus, in the clinical setting, they are not so noticeable. The 3D GLS was smaller among the patients, oppositely to the 2D GLS, suggesting that the former variable is more accurate to assess tlhe LV systolic function. The VFT is a dimensionless measure of the optimal vortex development inside the LV chamber; reflecting the efficiency of the diastolic filling and, consequently, blood ejection. This index showed to be diminished in patients with HM submitted to chemotherapy, indicating an impairment of the in1pulse and thrust, hence appearing to be a very early marker of diastolic and systolic dysfunction in this group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea level). With hypoxia, exercise PaO2 dropped to 31-34 mmHg and arterial O2 content (CaO2) was reduced by 35% (P < 0.001). Forty-one percent of the reduction in CaO2 was explained by the lower inspired O2 pressure (PiO2) in hypoxia, whereas the rest was due to the impairment of the pulmonary gas exchange, as reflected by the higher alveolar-arterial O2 difference in hypoxia (P < 0.05). Hypoxia caused a 47% decrease in VO2 max (a greater fall than accountable by reduced CaO2). Peak cardiac output decreased by 17% (P < 0.01), due to equal reductions in both peak heart rate and stroke VOlume (P < 0.05). Peak leg blood flow was also lower (by 22%, P < 0.01). Consequently, systemic and leg O2 delivery were reduced by 43 and 47%, respectively, with hypoxia (P < 0.001) correlating closely with VO2 max (r = 0.98, P < 0.001). Therefore, three main mechanisms account for the reduction of VO2 max in severe acute hypoxia: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max.