976 resultados para STRESS-CONCENTRATIONS
                                
Resumo:
Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.
                                
Resumo:
The morphology of asphalt mixture can be defined as a set of parameters describing the geometrical characteristics of its constituent materials, their relative proportions as well as spatial arrangement in the mixture. The present study is carried out to investigate the effect of the morphology on its meso- and macro-mechanical response. An analysis approach is used for the meso-structural characterisation based on the X-ray computed tomography (CT) data. Image processing techniques are used to systematically vary the internal structure to obtain different morphology structures. A morphology framework is used to characterise the average mastic coating thickness around the main load carrying structure in the structures. The uniaxial tension simulation shows that the mixtures with the lowest coating thickness exhibit better inter-particle interaction with more continuous load distribution chains between adjacent aggregate particles, less stress concentrations and less strain localisation in the mastic phase.
                                
Resumo:
The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.
                                
Resumo:
The durability of a polymer trileaflet valve is dependent on leaflet stress concentrations, so valve designs that reduce stress can, hypothetically, increase durability. Design aspects that are believed to contribute to reduced leaflet stress include stent flexibility, parabolic coaptation curvature, and leaflet anisotropy. With this in mind, the purpose of this investigation was to elucidate what specific combinations of these parameters promote optimal acute and long-term valve function. A combination of four stent designs, seven leaflet reinforcement materials, and three coaptation geometries were evaluated through a combination of experimentation and modeling. Static tensile and Poisson’s ratio tests and dynamic tensile fatigue testing were used to evaluate the individual leaflet components; and hydrodynamic testing and accelerated valve fatigue was used to assess complete valve prototypes. The two most successful designs included a 0.40 mm thick knit-reinforced valve with a fatigue life of 10.35 years, and a 0.20 mm thick knit-reinforced valve with a 28.9 mmHg decrease in pressure drop over the former. A finite element model was incorporated to verify the impact of the above-mentioned parameters on leaflet stress concentrations. Leaflet anisotropy had a large impact on stress concentrations, and matching the circumferential modulus to that of the natural valve showed the greatest benefit. Varying the radial modulus had minimal impact. Varying coaptation geometry had no impact, but stent flexibility did have a marked effect on the stress at the top of the commissure, where a completely rigid stent resulted in a higher peak stress than a flexible stent (E = 385 MPa). In conclusion, stent flexibility and leaflet anisotropy do effect stress concentrations in the SIBS trileaflet valve, but coaptation geometry does not. Regions of high stress concentrations were linked to failure locations in vitro, so a fatigue prediction model was developed from the S/N curves generated during dynamic tensile testing of the 0.20 mm knit-reinforced leaflets. Failure was predicted at approximately 400 million cycles (10 years) at the top of the commissure. In vitro fatigue of this valve showed failure initiation after approximately 167 million cycles (4.18 years), but it was related to a design defect that is subsequently being changed.
                                
Resumo:
A utilização de adesivos hoje em dia encontra-se de tal forma disseminada que é transversal a diversos setores do mercado, como a indústria aeroespacial, aeronáutica, automóvel e do desporto. De facto, o uso de ligações adesivas em estruturas mecânicas tem vindo a crescer, na medida em que estes têm substituído os métodos de ligação convencionais, tais como brasagem, rebitagem, ligações aparafusadas e soldadura. No geral, as ligações adesivas apresentam diversas vantagens, desde a diminuição do peso, redução da concentração de tensões, facilidade de fabrico, bom comportamento a solicitações cíclicas e capacidade de unir materiais dissimilares. O crescente interesse da indústria nas ligações adesivas tem por base o aumento da confiabilidade nos métodos de previsão de resistência de estruturas adesivas. Neste contexto surgem os Modelos de Dano Coesivo, que permitem simular o crescimento do dano em estruturas, após introdução das leis coesivas previamente estimadas nos modelos numéricos. Uma das fases mais importantes neste método de previsão é a estimativa das leis coesivas em tração e corte, pelo que se torna de grande relevância a existência e validação de métodos precisos para a obtenção destas leis. Este trabalho visa a validação de leis coesivas em tração e corte, estimadas pela aplicação do método direto, na previsão da resistência de juntas com geometria de solicitação mista. Neste âmbito, ensaiaram-se JSS e JSD com diferentes comprimentos de sobreposição e com adesivos de diferente ductilidade. Foram considerados os adesivos Araldite® AV138, de elevada resistência e baixa ductilidade, o Araldite® 2015, de moderada ductilidade e resistência intermédia, e o SikaForce® 7752, de baixa resistência e elevada ductilidade. As leis coesivas em modo puro serviram de base para a criação de leis simplificadas triangulares, trapezoidais e linearesexponenciais, que foram testadas para cada um dos adesivos. A validação das mesmas consumou-se por comparação das previsões numéricas com os resultados experimentais. Procedeu-se também a uma análise de tensões de arrancamento e de corte no adesivo, de modo a compreender a influência das tensões na resistência das juntas. A utilização do método direto permitiu obter previsões de resistência bastante precisas, indicando as formas de leis coesivas mais adequadas para cada conjunto adesivo/geometria de junta. Para além disso, para as condições geométricas e materiais consideradas, este estudo permitiu concluir que não se cometem erros significativos na escolha de uma lei menos adequada.
                                
Resumo:
As ligações adesivas têm sido utilizadas em diversas áreas de aplicação. A utilização das juntas adesivas em aplicações industriais tem vindo a aumentar nos últimos anos, por causa das vantagens significativas que apresentam comparativamente com os métodos tradicionais de ligação tais como soldadura, ligações aparafusadas e rebitadas. A redução de peso, redução de concentrações de tensões e facilidade de fabrico são algumas das principais vantagens das ligações adesivas. Devido à crescente utilização das ligações adesivas, torna-se necessário a existência de ferramentas que permitam prever a resistência das juntas com elevada precisão. Assim, para a análise de juntas adesivas, está a ser cada vez mais utilizado o método de Elementos Finitos. Neste âmbito o Método de Elementos Finitos eXtendido (MEFX) perfila-se como um método capaz de prever o comportamento da junta, embora este ainda não esteja convenientemente estudado no que diz respeito à aplicação a juntas adesivas. Neste trabalho é apresentado um estudo experimental e numérico pelo MEFX de juntas de sobreposição dupla, nas quais são aplicados adesivos que variam desde frágeis e rígidos, como o caso do Araldite® AV138, até adesivos mais dúcteis, como o Araldite® 2015 e o Sikaforce® 7888. Foram considerados substratos de alumínio (AW6082-T651) em juntas com diferentes comprimentos de sobreposição, sendo sujeitos a esforços de tração de forma a avaliar o seu desempenho. Na análise numérica foi realizada uma análise da distribuição de tensões na camada adesiva, a previsão da resistência das juntas pelo MEFX segundo critérios de iniciação de dano baseados em tensões e deformações, e ainda um estudo sobre o critério energético de propagação de dano. A análise por MEFX revelou que este método é bastante preciso quando usados os critérios de iniciação de dano MAXS e QUADS, e parâmetro com valor de 1 no critério energético de propagação de dano. Apesar de ser um método pouco estudado na literatura comparativamente com outros, o MEFX apresentou resultados muito satisfatórios.
                                
Resumo:
Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.
                                
Resumo:
Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs. Earlier studies have related head kinematics (linear and angular accelerations) to TBIs. However, fewer studies have dealt with brain kinetics (impact pressures and stresses) occurring during head-on collisions. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests were conducted for linear impact accelerations and the Head Impact Contact Pressures (HICP) calculated from them were applied to a validated FE model. The results showed lateral region of the head as the most vulnerable region to damage from any drop height or impact distance followed by posterior region. The TBI tolerance levels in terms of Von-Mises and Maximum Principal Stresses deduced for lateral impact were 30 MPa and 18 MPa respectively. These levels were corresponding to 2.625 feet drop height. The drop heights beyond this value will result in TBI causing stress concentrations in human head without any detectable structural damage to the brain tissue. This data can be utilized for designing helmets that provide cushioning to brain along with providing a resistance to shear.
                                
Resumo:
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.
                                
Resumo:
We characterized the changes in blood glucose concentrations in healthy cats exposed to a short stressor and determined the associations between glucose concentrations, behavioral indicators of stress, and blood variables implicated in stress hyperglycemia (plasma glucose, lactate, insulin, glucagon, cortisol, epinephrine, and norepinephrine concentrations). Twenty healthy adult cats with normal glucose tolerance had a 5-minute spray bath. Struggling and vocalization were the most frequent behavioral responses. There was a strong relationship between struggling and concentrations of glucose and lactate. Glucose and lactate concentrations increased rapidly and significantly in all cats in response to bathing, with peak concentrations occurring at the end of the bath (glucose baseline 83 mg/dL, mean peak 162 mg/dL; lactate baseline 6.3 mg/dL, mean peak 64.0 mg/dL). Glucose response resolved within 90 minutes in 12 of the 20 cats. Changes in mean glucose concentrations were strongly correlated with changes in mean lactate (r =.84; P
                                
Resumo:
OBJECTIVE: It is known that exogenous lactate given as an i.v. energy infusion is able to counteract a neuroglycopenic state that developed during psychosocial stress. It is unknown, however, whether the brain under stressful conditions can induce a rise in plasma lactate to satisfy its increased needs during stress. Since lactate is i) an alternative cerebral energy substrate to glucose and ii) its plasmatic concentration is influenced by the sympathetic nervous system, the present study aimed at investigating whether plasma lactate concentrations increase with psychosocial stress in humans. METHODS: 30 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and a non-stress control session). Blood samples were frequently taken to assess plasma lactate concentrations and stress hormone profiles. RESULTS: Plasma lactate increased 47% during psychosocial stress (from 0.9 ± 0.05 to 1.4 ± 0.1 mmol/l; interaction time × stress intervention: F = 19.7, p < 0.001). This increase in lactate concentrations during stress was associated with an increase in epinephrine (R(2) = 0.221, p = 0.02) and ACTH concentrations (R(2) = 0.460, p < 0.001). CONCLUSION: Plasma lactate concentrations increase during acute psychosocial stress in humans. This finding suggests the existence of a demand mechanism that functions to allocate an additional source of energy from the body towards the brain, which we refer to as 'cerebral lactate demand'.
                                
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
                                
Resumo:
In the present study we determined the efficacy of the measurement of fecal cortisol and androgen metabolite concentrations to monitor adrenal and testicular activity in the jaguar (Panthera onca). Three captive male jaguars were chemically restrained and electroejaculated once or twice within a period of two months. Fecal samples were collected daily for 5 days before and 5 days after the procedure and stored at -20ºC until extraction. Variations in the concentrations of cortisol and androgen metabolites before and after the procedure were determined by solid phase cortisol and testosterone radioimmunoassay and feces dry weight was determined by drying at 37ºC for 24 h under vacuum. On four occasions, fecal cortisol metabolite levels were elevated above baseline (307.8 ± 17.5 ng/g dry feces) in the first fecal sample collected after the procedure (100 to 350% above baseline). On one occasion, we did not detect any variation. Mean (± SEM) fecal androgen concentration did not change after chemical restraint and electroejaculation (before: 131.1 ± 26.7, after: 213.7 ± 43.6 ng/g dry feces). These data show that determination of fecal cortisol and androgen metabolites can be very useful for a noninvasive assessment of animal well-being and as a complement to behavioral, physiological, and pathological studies. It can also be useful for the study of the relationship between adrenal activity and reproductive performance in the jaguar.
                                
Resumo:
This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P < 0.01) and decreased the plasma homocysteine concentration by 8.8% (P < 0.01). The reduction in plasma homocysteine correlated weakly with the increase in dietary folate during the test intervention (r = -0.35, P = 0.04). The plasma antioxidant status and markers of oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.
                                
Resumo:
Catecholamines act as neurotransmitters and hormones. Studies conducted to understand the synthesis and metabolism of these monoamines during stress have been the main concern of many authors. This work proposes to investigate the time course of changes in epinephrine and norepinephrine concentration in adrenal gland obtained from rats submitted to acute immobilization stress. The results of the present study indicate that acute immobilization stress during 5 and 15min did not provoke changes in epinephrine and norepinephrine concentrations in adrenal gland in relation to the control group. Such results are justified due to the short time of the stress, showing that the stress did not provoke physiological alteration. The epinephrine and norepinephrine concentrations in adrenal gland increased significantly after the immobilization session in stressed groups during 30 and 50min as compared to control group. This increase probably is due to the emotional component of the immobilization stress. In this way, we suggested that the immobilization stress provoke increase in the biosynthesis of catecholamines in the adrenal gland from rats. However, the results shows that a maximum increase is reached at 30min of immobilization stress and then a decrement of catecholamines levels starts at 50min of the experimental design. This decline in catecholamines level may be consequence of adaptation to stress situations, an increase of the activity of the uptake systems and/or metabolization of catecholamines. In conclusion, these results suggest an effective participation of the adrenal glands to maintain the homeostasis of organism to the stressful conditions. © 2003 Elsevier Ltd. All rights reserved.