947 resultados para STOCHASTIC MODELS
Resumo:
A stochastic metapopulation model accounting for habitat dynamics is presented. This is the stochastic SIS logistic model with the novel aspect that it incorporates varying carrying capacity. We present results of Kurtz and Barbour, that provide deterministic and diffusion approximations for a wide class of stochastic models, in a form that most easily allows their direct application to population models. These results are used to show that a suitably scaled version of the metapopulation model converges, uniformly in probability over finite time intervals, to a deterministic model previously studied in the ecological literature. Additionally, they allow us to establish a bivariate normal approximation to the quasi-stationary distribution of the process. This allows us to consider the effects of habitat dynamics on metapopulation modelling through a comparison with the stochastic SIS logistic model and provides an effective means for modelling metapopulations inhabiting dynamic landscapes.
Resumo:
Stochastic models based on Markov birth processes are constructed to describe the process of invasion of a fly larva by entomopathogenic nematodes. Various forms for the birth (invasion) rates are proposed. These models are then fitted to data sets describing the observed numbers of nematodes that have invaded a fly larval after a fixed period of time. Non-linear birthrates are required to achieve good fits to these data, with their precise form leading to different patterns of invasion being identified for three populations of nematodes considered. One of these (Nemasys) showed the greatest propensity for invasion. This form of modelling may be useful more generally for analysing data that show variation which is different from that expected from a binomial distribution.
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics. The Bayesian computation with empirical likelihood algorithm we develop in this paper also provides an evaluation of its own performance through an associated effective sample size. The method is illustrated using several examples, including estimation of standard distributions, time series, and population genetics models.
Resumo:
The appropriate frequency and precision for surveys of wildlife populations represent a trade-off between survey cost and the risk of making suboptimal management decisions because of poor survey data. The commercial harvest of kangaroos is primarily regulated through annual quotas set as proportions of absolute estimates of population size. Stochastic models were used to explore the effects of varying precision, survey frequency and harvest rate on the risk of quasiextinction for an arid-zone and a more mesic-zone kangaroo population. Quasiextinction probability increases in a sigmoidal fashion as survey frequency is reduced. The risk is greater in more arid regions and is highly sensitive to harvest rate. An appropriate management regime involves regular surveys in the major harvest areas where harvest rate can be set close to the maximum sustained yield. Outside these areas, survey frequency can be reduced in relatively mesic areas and reduced in arid regions when combined with lowered harvest rates. Relative to other factors, quasiextinction risk is only affected by survey precision (standard error/mean × 100) when it is >50%, partly reflecting the safety of the strategy of harvesting a proportion of a population estimate.
Resumo:
This thesis presents a simplified state-variable method to solve for the nonstationary response of linear MDOF systems subjected to a modulated stationary excitation in both time and frequency domains. The resulting covariance matrix and evolutionary spectral density matrix of the response may be expressed as a product of a constant system matrix and a time-dependent matrix, the latter can be explicitly evaluated for most envelopes currently prevailing in engineering. The stationary correlation matrix of the response may be found by taking the limit of the covariance response when a unit step envelope is used. The reliability analysis can then be performed based on the first two moments of the response obtained.
The method presented facilitates obtaining explicit solutions for general linear MDOF systems and is flexible enough to be applied to different stochastic models of excitation such as the stationary models, modulated stationary models, filtered stationary models, and filtered modulated stationary models and their stochastic equivalents including the random pulse train model, filtered shot noise, and some ARMA models in earthquake engineering. This approach may also be readily incorporated into finite element codes for random vibration analysis of linear structures.
A set of explicit solutions for the response of simple linear structures subjected to modulated white noise earthquake models with four different envelopes are presented as illustration. In addition, the method has been applied to three selected topics of interest in earthquake engineering, namely, nonstationary analysis of primary-secondary systems with classical or nonclassical dampings, soil layer response and related structural reliability analysis, and the effect of the vertical components on seismic performance of structures. For all the three cases, explicit solutions are obtained, dynamic characteristics of structures are investigated, and some suggestions are given for aseismic design of structures.
Resumo:
O estudo dos diferentes fenômenos de separação tem sido cada vez mais importante para os diferentes ramos da indústria e ciência. Devido à grande capacidade computacional atual, é possível modelar e analisar os fenômenos cromatográficos a nível microscópico. Os modelos de rede vêm sendo cada vez mais utilizados, para representar processos de separação por cromatografia, pois através destes pode-se representar os aspectos topológicos e morfológicos dos diferentes materiais adsorventes disponíveis no mercado. Neste trabalho visamos o desenvolvimento de um modelo de rede tridimensional para representação de uma coluna cromatográfica, a nível microscópico, onde serão modelados os fenômenos de adsorção, dessorção e dispersão axial através de um método estocástico. Também foram utilizadas diferentes abordagens com relação ao impedimento estérico Os resultados obtidos foram comparados a resultados experimentais. Depois é utilizado um modelo de rede bidimensional para representar um sistema de adsorção do tipo batelada, mantendo-se a modelagem dos fenômenos de adsorção e dessorção, e comparados a sistemas reais posteriormente. Em ambos os sistemas modelados foram analisada as constantes de equilíbrio, parâmetro fundamental nos sistemas de adsorção, e por fim foram obtidas e analisadas isotermas de adsorção. Foi possível concluir que, para os modelos de rede, os fenômenos de adsorção e dessorção bastam para obter perfis de saída similares aos vistos experimentalmente, e que o fenômeno da dispersão axial influência menos que os fenômenos cinéticos em questão
Resumo:
XII, 116 p.
Resumo:
Stock-rebuilding time isopleths relate constant levels of fishing mortality (F), stock biomass, and management goals to rebuilding times for overfished stocks. We used simulation models with uncertainty about FMSY and variability in annual intrinsic growth rates (ry) to calculate rebuilding time isopleths for Georges Bank yellowtail flounder, Limanda ferruginea, and cowcod rockfish, Sebastes levis, in the Southern California Bight. Stock-rebuilding time distributions from stochastic models were variable and right-skewed, indicating that rebuilding may take less or substantially more time than expected. The probability of long rebuilding times increased with lower biomass, higher F, uncertainty about FMSY, and autocorrelation in ry values. Uncertainty about FMSY had the greatest effect on rebuilding times. Median recovery times from simulations were insensitive to model assumptions about uncertainty and variability, suggesting that median recovery times should be considered in rebuilding plans. Isopleths calculated in previous studies by deterministic models approximate median, rather than mean, rebuilding times. Stochastic models allow managers to specify and evaluate the risk (measured as a probability) of not achieving a rebuilding goal according to schedule. Rebuilding time isopleths can be used for stocks with a range of life histories and can be based on any type of population dynamics model. They are directly applicable with constant F rebuilding plans but are also useful in other cases. We used new algorithms for simulating autocorrelated process errors from a gamma distribution and evaluated sensitivity to statistical distributions assumed for ry. Uncertainty about current biomass and fishing mortality rates can be considered with rebuilding time isopleths in evaluating and designing constant-F rebuilding plans.