989 resultados para STAR-FORMATION HISTORY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The ESO public survey VISTA variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHK(s) filters. In addition to the multi-band imaging the variability monitoring campaign in the K-s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK(s) filters taken in the 2010 observing season. The typical image quality is similar to 0 ''.9-1 ''.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK(s) images in the disk area and 90% of the JHK(s) images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 x 10(8) stellar sources in the bulge and 1.68 x 10(8) in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 x 10(8) stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK(s) bands extend typically similar to 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K-s = 15-18 mag has rms similar to 35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we give a possible solution to the cosmological constant problem. It is shown that the traditional approach, based on volume weighting of probabilities, leads to an incoherent conclusion: the probability that a randomly chosen observer measures Lambda = 0 is exactly equal to 1. Using an alternative, volume averaging measure, instead of volume weighting can explain why the cosmological constant is non-zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We construct a theoretical model to predict the number of orphan afterglows (OA) from gamma-ray bursts (GRBs) triggered by primordial metal-free (Pop III) stars expected to be observed by the Gaia mission. In particular, we consider primordial metal-free stars that were affected by radiation from other stars (Pop III. 2) as a possible target. Methods. We use a semi-analytical approach that includes all relevant feedback effects to construct cosmic star formation history and its connection with the cumulative number of GRBs. The OA events are generated using the Monte Carlo method, and realistic simulations of Gaia's scanning law are performed to derive the observation probability expectation. Results. We show that Gaia can observe up to 2.28 +/- 0.88 off-axis afterglows and 2.78 +/- 1.41 on-axis during the five-year nominal mission. This implies that a nonnegligible percentage of afterglows that may be observed by Gaia (similar to 10%) could have Pop III stars as progenitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. Thesis has been carried out in the framework of a long-term and large project devoted to describe the main photometric, chemical, evolutionary and integrated properties of a representative sample of Large and Small Magellanic Cloud (LMC and SMC respectively) clusters. The globular clusters system of these two Irregular galaxies provides a rich resource for investigating stellar and chemical evolution and to obtain a detailed view of the star formation history and chemical enrichment of the Clouds. The results discussed here are based on the analysis of high-resolution photometric and spectroscopic datasets obtained by using the last generation of imagers and spectrographs. The principal aims of this project are summarized as follows: • The study of the AGB and RGB sequences in a sample of MC clusters, through the analysis of a wide near-infrared photometric database, including 33 Magellanic globulars obtained in three observing runs with the near-infrared camera SOFI@NTT (ESO, La Silla). • The study of the chemical properties of a sample of MCs clusters, by using optical and near-infrared high-resolution spectra. 3 observing runs have been secured to our group to observe 9 LMC clusters (with ages between 100 Myr and 13 Gyr) with the optical high-resolution spectrograph FLAMES@VLT (ESO, Paranal) and 4 very young (<30 Myr) clusters (3 in the LMC and 1 in the SMC) with the near-infrared high-resolution spectrograph CRIRES@VLT. • The study of the photometric properties of the main evolutive sequences in optical Color- Magnitude Diagrams (CMD) obtained by using HST archive data, with the final aim of dating several clusters via the comparison between the observed CMDs and theoretical isochrones. The determination of the age of a stellar population requires an accurate measure of the Main Sequence (MS) Turn-Off (TO) luminosity and the knowledge of the distance modulus, reddening and overall metallicity. For this purpose, we limited the study of the age just to the clusters already observed with high-resolution spectroscopy, in order to date only clusters with accurate estimates of the overall metallicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the most recent results of our ongoing long-term high resolution spectroscopic study of nearby (d ≤ 25 pc) FGK stars which aim is to characterize the local properties of the Galaxy, in particular the star-formation history. A through analysis has been carried out for 253 cool stars in the solar neighborhood. This includes radial and rotational velocities determinations, chromospheric activity levels inference, kinematic analysis, and age estimates. This study does not only shed new light on the issue of stellar formation history but also contributes to any present or future mission aiming to detect extra-solar planets. Exo-planets are likely to be found orbiting around nearby cool stars and their detection and characterization is highly dependent on the precise determination of fundamental stellar parameters such as age, activity levels. Therefore, our study is of paramount importance to ensure the success of any such mission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new measurements of the luminosity function (LF) of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17 < z < 0.24) and 1725 2SLAQ LRGs (with 0.5 < z < 0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M-0.2r - 5 log h(0.7) = - 22.5, which are 2.51 +/- 0.03 x 10(-7) L circle dot Mpc(-3) and 2.44 +/- 0.15 x 10(-7) L circle dot Mpc(-3), respectively (< 10 per cent uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M-0.2r - 5 log h(0.7) = - 21 ( or brighter than similar to L-*).. We test our SDSS and 2SLAQ LFs against a simple 'dry merger' model for the evolution of massive red galaxies and find that at least half of the LRGs at z similar or equal to 0.2 must already have been well assembled (with more than half their stellar mass) by z similar or equal to 0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm dust continuum maps of six massive, compact, dusty star-forming galaxies at z ~ 2.5. These galaxies are selected for their small rest-frame optical sizes (r_e,F160W ~ 1.6 kpc) and high stellar mass densities that suggest that they are direct progenitors of compact quiescent galaxies at z ~ 2. The deep observations yield high far-infrared (FIR) luminosities of L_IR = 10^12.3-12.8 L_⨀ and star formation rates (SFRs) of SFR = 200–700 M_⊙ yr^−1, consistent with those of typical star-forming "main sequence" galaxies. The high spatial resolution (FWHM ~ 0 12–0 18) ALMA and Hubble Space Telescope photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR–SFR overwhelmingly dominates the bolometric SFR up to r ~ 5 kpc, by a factor of over 100× from the unobscured UV–SFR. Furthermore, the effective radius of the mean SFR profile (r_e,SFR ~ 1 kpc) is ~30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of Δt = ±100 Myr, is a 4×increase of the stellar mass density within the central 1 kpc and a 1.6× decrease of the half-mass–radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, I aim to study the evolution with redshift of the gas mass fraction of a sample of 53 sources (from z ∼ 0.5 to z > 5) serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate C II at Early Times (ALPINE). First, I used SED-fitting software CIGALE, which is able to implement energy balancing between the optical and the far infrared part, to produce a best-fit template of my sources and to have an estimate of some physical properties, such as the star formation rate (SFR), the total infrared luminosity and the total stellar mass. Then, using the tight correlation found by Scoville et al. (2014) between the ISM molecular gas mass and the rest-frame 850 μm luminosity, I used the latter, extrapolating it from the best-fit template using a code that I wrote in Python, as a tracer for the molecular gas. For my sample, I then derived the most important physical properties, such as molecular gas mass, gas mass fractions, specific star formation rate and depletion timescales, which allowed me to better categorize them and find them a place within the evolutionary history of the Universe. I also fitted our sources, via another code I wrote again in Python, with a general modified blackbody (MBB) model taken from the literature (Gilli et al. (2014), D’Amato et al. (2020)) to have a direct method of comparison with similar galaxies. What is evident at the end of the paper is that the methods used to derive the physical quantities of the sources are consistent with each other, and these in turn are in good agreement with what is found in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Context. Dwarf irregular galaxies are relatively simple unevolved objects where it is easy to test models of galactic chemical evolution. Aims. We attempt to determine the star formation and gas accretion history of IC 10, a local dwarf irregular for which abundance, gas, and mass determinations are available. Methods. We apply detailed chemical evolution models to predict the evolution of several chemical elements (He, O, N, S) and compared our predictions with the observational data. We consider additional constraints such as the present-time gas fraction, the star formation rate (SFR), and the total estimated mass of IC 10. We assume a dark matter halo for this galaxy and study the development of a galactic wind. We consider different star formation regimes: bursting and continuous. We explore different wind situations: i) normal wind, where all the gas is lost at the same rate and ii) metal-enhanced wind, where metals produced by supernovae are preferentially lost. We study a case without wind. We vary the star formation efficiency (SFE), the wind efficiency, and the time scale of the gas infall, which are the most important parameters in our models. Results. We find that only models with metal-enhanced galactic winds can reproduce the properties of IC 10. The star formation must have proceeded in bursts rather than continuously and the bursts must have been less numerous than similar to 10 over the whole galactic lifetime. Finally, IC 10 must have formed by a slow process of gas accretion with a timescale of the order of 8 Gyr.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular H alpha-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s(-1) are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims. We calculate the theoretical event rate of gamma-ray bursts (GRBs) from the collapse of massive first-generation (Population III; Pop III) stars. The Pop III GRBs could be super-energetic with the isotropic energy up to E(iso) greater than or similar to 10(55-57) erg, providing a unique probe of the high-redshift Universe. Methods. We consider both the so-called Pop III.1 stars (primordial) and Pop III.2 stars (primordial but affected by radiation from other stars). We employ a semi-analytical approach that considers inhomogeneous hydrogen reionization and chemical evolution of the intergalactic medium. Results. We show that Pop III.2 GRBs occur more than 100 times more frequently than Pop III.1 GRBs, and thus should be suitable targets for future GRB missions. Interestingly, our optimistic model predicts an event rate that is already constrained by the current radio transient searches. We expect similar to 10-10(4) radio afterglows above similar to 0.3 mJy on the sky with similar to 1 year variability and mostly without GRBs (orphans), which are detectable by ALMA, EVLA, LOFAR, and SKA, while we expect to observe maximum of N < 20 GRBs per year integrated over at z > 6 for Pop III.2 and N < 0.08 per year integrated over at z > 10 for Pop III.1 with EXIST, and N < 0.2 for Pop III.2 GRBs per year integrated over at z > 6 with Swift.