996 resultados para STABILIZED PLATINUM NANOPARTICLES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of gold nanoparticles (AuNps) and their electrocatalytic activity for borohydride oxidation reaction (BOR). Ultraviolet spectroscopy (UV- vis) and transmission electron microscopy (TEM) confirmed the formation of poly(vinyl pyrrolidone)protected colloidal AuNps through direct reduction of Au3+ by glycerol in alkaline medium at room temperature. For the BOR tests the AuNps were directly produced onto carbon to yield the Au/C catalyst. Levich plots revealed that the process occured via 7.2 electrons, therefore near the theoretical value of 8 electrons. When compared to bulk Au, the gold nanoparticles presented enhanced catalytic properties since the onset potential for BOR was shifted 200 mV towards negative potentials. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure of gold-platinum nanoparticles is heavily debated as theoretical calculations predict core-shell particles, whereas x-ray diffraction experiments frequently detect randomly mixed alloys. By calculating the structure of gold-platinum nanoparticles with diameters of up to approximate to 3.5 nm and simulating their x-ray diffraction patterns, we show that these seemingly opposing findings need not be in contradiction: Shells of gold are hardly visible in usual x-ray scattering, and the interpretation of Vegard's law is ambiguous on the nanoscale. DOI: 10.1103/PhysRevB.86.241403

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present results on the electro-oxidation of ethanol on unsupported (carbon free) platinum nanoparticles, considering the effects of the alcohol concentration. The case of the so-called dual pathway mechanism during the electro-oxidation of ethanol showed to be influenced by the surface coverage of adsorbed carbon monoxide (COad) at unsupported platinum. The influences of adsorbed intermediates were followed by in situ infrared spectroscopy (FTIR) and by electrochemical experiments. Unsupported platinum showed that the reaction leads to the formation of CO2 and acetic acid as main products at low concentrations of ethanol (0.01 to 0.1 mol L-1). At least in this case of 0.01 mol L-1 ethanol, most formation of CO2 occurred via COad (indirect pathway). At higher concentration of ethanol, however, most CO2 was formed via a reactive intermediate such as acetaldehyde (direct pathway). In addition, in this higher concentration of ethanol, the acetic acid was produced via formation of adsorbed acetaldehyde (via acetate) at higher overpotentials. In case of the acetic acid formation, a dual pathway was identified during the electro-oxidation of ethanol at low alcohol concentrations, whereas a parallel pathway occurred without the formation of adsorbed acetate intermediates at low overpotentials. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.101203jes] All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iron-platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNFalpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The voltammetric profile of preferentially shaped platinum nanoparticles has been used to analyze the different sites present on the surface. For the first time, this analysis has been made in NaOH solutions and revisited in sulfuric and perchloric acid media. The comparison with the voltammetric profiles of the model surfaces, that is, single-crystal electrodes, allows assigning the different signals appearing in the voltammograms of the nanoparticle to specific sites on the surface. A good correlation between the shape of the nanoparticle determined by TEM and the voltammetric profile is obtained. For the nanoparticles characterized in alkaline media, the adsorbed species on the surface have been characterized, and three major regions can be identified. Below 0.2 V, the major contribution is due to hydrogen adsorption, whereas above 0.6 V, adsorbed OH is the main species on the surface. Between those values, the signals are due to the competitive adsorption/desorption process of OH/H. New criteria for determining the active area in NaOH solutions has been proposed. In this medium, the total charge density measured between 0.06 and 0.90 V stands for 390 μC cm–2. The areas measured are in perfect agreement with those measured in acid media. Once the nanoparticles have been characterized, the behavior of the nanoparticles toward CO oxidation is analyzed and compared with that observed for single-crystal electrodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enrichment of metallic single-walled carbon nanotubes (SWNTs) has been accomplished by several means, including new extraction and synthetic procedures and by interaction with metal nanoparticles as well as electron donor molecules. In the presence of Fe(CO)(5) the arc discharge method yields nearly pure metallic nanotubes. Fluorous chemistry involving the preferential diazotization of metallic SWNTs offers a good procedure of obtaining the pure metallic species. Interaction of gold or platinum nanoparticles as well as of electron-donor molecules such as aniline and tetrathiafulvalene (TTF) transform semiconducting SWNTs into metallic ones. Raman and electroni spectroscopies provide ideal means to monitor enrichment of metallic SWNTs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A composite of mesoporous carbon (MC) with poly(3,4-ethylenedioxythiophene) (PEDOT) is studied as catalyst support for platinum nanoparticles. The durability of commercial Pt/carbon and Pt/MC-PEDOT as cathode catalyst is investigated by invoking air-fuel boundary at the anode side so as to foster carbon corrosion at the cathode side of a polymer electrolyte fuel cell (PEFC). Pt/MC-PEDOT shows higher resistance to carbon corrosion in relation to Pt/C. Electrochemical techniques such as cyclic voltammetry (CV) and impedance measurements are used to evaluate the extent of degradation in the catalyst layer. It is surmised that the resistance of MC-PEDOT as catalyst support toward electrochemical oxidation makes Pt/MC-PEDOT a suitable and stable cathode catalyst for PEFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hexaazamacrocycle (L) stabilized gold nanoparticles (AuNPs) were prepared by combining L with HAuCl4 center dot 3H(2)O in a variety of alcohol-water (1 : 1) mixtures. The dual roles of L as a reducing and stabilizing agent were exploited for the synthesis of AuNPs under the optimized ratio of L to Au3+ (2 : 1). Self-assembled gold nanofilms (AuNFs) were constructed at liquid-liquid interfaces by adding equal volumes of hexane to the dispersions of AuNPs in the alcohol-water systems. The nanofilms were formed spontaneously by shaking the two-phase mixture for a minute followed by standing. The alcohols explored for the self-assembly phenomenon were methanol, ethanol, i-propanol and t-butanol. The systems containing methanol or t-butanol resulted in AuNFs at the interfaces, whereas the other two alcohols were found not suitable and the AuNPs remained dispersed in the corresponding alcohol-water medium. The AuNFs prepared under suitable conditions were coated on a variety of surfaces by the dip and lift-off method/solvent removal approach. The AuNFs were characterized by UV-vis, SEM, TEM, AFM and contact angle measurement techniques. A coated glass-vial or cuvette was used as a catalytic reservoir for nitro-reduction reactions under ambient and aqueous conditions using NaBH4 as the reducing agent. The reduced products (amines) were extracted by aqueous work-up using ethyl acetate followed by evaporation of the organic layer; the isolated products required no further purification. The catalyst was recovered by simply decanting the reaction mixture whereupon the isolated catalyst remained coated inside the vessel. The recovered catalyst was found to be equally efficient for further catalytic cycles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were synthesized by the combination of electrospinning and thermal treatment processes. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that spherical Pd nanoparticles (NPs) are well-dispersed on the surfaces of CNFs or embedded in CNFs. X-ray diffraction (XRD) pattern indicates that cubic phase of Pd was formed during the reduction and carbonization processes, and the presence of Pd NPs promoted the graphitization of CNFs. This nanocomposite material exhibited high electric conductivity and accelerated the electron transfer, as verified by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).