935 resultados para SOMATIC MOSAICISM
Resumo:
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.
Resumo:
The possible interactions between Delta9-tetrahydrocannabinol (THC) and nicotine remain unclear in spite of the current association of cannabis and tobacco in humans. The aim of the present study was to explore the interactions between these two drugs of abuse by evaluating the consequences of THC administration on the somatic manifestations and the aversive motivational state associated to nicotine withdrawal in mice. Acute THC administration significantly decreased the incidence of several nicotine withdrawal signs precipitated by mecamylamine or naloxone, such as wet-dog-shakes, paw tremor and scratches. In both experimental conditions, the global withdrawal score was also significantly attenuated by acute THC administration. THC also reversed conditioned place aversion associated to naloxone precipitated nicotine withdrawal. We have then evaluated whether this effect of THC was due to possible adaptive changes induced by chronic nicotine on CB1 cannabinoid receptors. The stimulation of GTPS-binding proteins by the cannabinoid agonist WIN 55,212-2 and the density of CB1 cannabinoid receptor binding labelled with [3H] CP-55,940 were not modified by chronic nicotine treatment in the different brain structures investigated. Finally, we evaluated the consequences of THC administration on c-Fos expression in several brain structures after chronic nicotine administration and withdrawal. c-Fos was decreased in the caudate putamen and the dentate gyrus after mecamylamine precipitated nicotine withdrawal. However, acute THC administration did not modify c-Fos expression under these experimental conditions. Taken together, these results indicate that THC administration attenuated somatic signs of nicotine withdrawal and this effect was not associated to compensatory changes on CB1 cannabinoid receptors during chronic nicotine administration. In addition, THC also ameliorated the aversive motivational consequences of nicotine withdrawal.
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.
Resumo:
We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.
Resumo:
Mosaicism for an extra microchromosome was discovered in amniotic cell cultures of a 39-year-old woman. Using G, Q, C bands and silver staining, it was concluded that the extra chromosome was bisatellited. Parents' karyotype was normal. Parents elected for termination of the pregnancy. The presence of the extra microchromosome was confirmed in various tissues of the aborted fetus. The literature on the subject is briefly reviewed.
Resumo:
Anorexia nervosa, which affects about 2-3% of the general population, is the psychiatric illness with the highest rate of mortality. The management is often complex, requiring multiple stakeholders on the patient's physical and psychiatric. The new specialized centre "abC" (anorexia-bulimia, Centre vaudois) was created with the objective of providing quality services to patients involved and to provide a network facilitating the interaction between physicians and specialized institutions. This is an inter-institutional and interdisciplinary collaboration born of the CHUV and the eHnv (Hospitalized Institutions in Nord Vaudois). The abC includes an outpatient pole (CHUV) and a hospital unit on the site of Saint Loup. At term, it will include a day centre (CHUV).
Resumo:
Freud defined the drive as "a concept on the frontier between the mental and the somatic". Today this view that was based on clinical observations interpreted within the psychoanalytical framework, can be revisited in light of the current neuroscientific notions of neuronal plasticity and somatic states. Indeed, through the mechanisms of plasticity experience leaves a trace that forms the neural basis of a representation of the experience. Such a representation R is associated with a somatic state S in the sense taken from the "somatic marker" model of Damasio. Thus, the internal reality of the subject, particularly the unconscious one, is constituted by such connected R's and S's. In the model that we discuss, the posterior insula represents the primary interoceptive cortex where information about somatic states S converges, while in the anterior insula the connection between R and S can take place and establish a neurobiological correlate for the notion of drive. We posit that the re-representations of S associated with R in the anterior insula may correspond to the Vorstellungsrepräsentanz postulated by Freud. We further propose that the tension between R and S established in the anterior insula is discharged according to the notion of drive through the motor arm of the limbic system, namely the anterior cingulate cortex which is heavily connected with the anterior insula.
Resumo:
Selostus: Perunan somaattisten hybridien ja niiden somatohaploidien fluoresenssi in situ -hybridisaatio Solanum brevidens -lajin spesifisten sekvenssien avulla
Resumo:
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Resumo:
In cork oak (Quercus suber L.), recurrent embryogenesis is produced in vitro through autoembryony without exogenous plant growth regulators (PGRs); secondary embryos appear on the embryo axis but seldom on cotyledons. Focusing mainly on the histological origin of neoformations, we investigated the influence of the embryo axis and exogenous PGRs on the embryogenic potential of somatic embryo cotyledons. Isolated cotyledons of somatic embryos became necrotic when cultured on PGR-free medium but gave secondary embryos when cultured on media containing benzyladenine and naphthaleneacetic acid. Cotyledons of cork oak somatic embryos are competent to give embryogenic responses. Isolated cotyledons without a petiole showed a lower percentage of embryogenic response than did those with a petiole. In petioles, somatic embryos arose from inner parenchyma tissues following a multicellular budding pattern. Joined to the embryo axis, cotyledons did not show morphogenic responses when cultured on PGR-free medium but revealed budlike and phylloid formations when cultured on medium with PGRs. The different morphogenic behavior displayed by somatic cotyledons indicates an influence of the embryo axis and indicates a relationship between organogenic and embryogenic regeneration pathways
Resumo:
The objective of this work was to evaluate leaf epidermis morphological characteristics of three citrus somatic hybrids, compared to their parents. Parental and somatic hybrid young leaves were collected and processed for scanning electron microscope observations. Citrus polyploid hybrids have fewer stomata per area and these are larger compared to their diploid parental parents. No differences in internal arrangement of the stomatal cells were detected between parental plants and somatic hybrids. Additional studies may determine if these differences will influence physiological behavior of the plants in the field.
Resumo:
This work had as objective to produce citrus somatic hybrids between sweet oranges and pummelos. After chemical fusion of sweet orange embryogenic protoplasts with pummelo mesophyll-derived protoplasts, plants were regenerated by somatic embryogenesis and acclimatized in a greenhouse. The hybrids of 'Hamlin' sweet orange + 'Indian Red' pummelo and 'Hamlin' sweet orange + 'Singapura' pummelo were confirmed by leaf morphology, chromosome counting and molecular analysis. These hybrids have potential to be used directly as rootstocks aiming blight, citrus tristeza virus, and Phytophthora-induced disease tolerance, as well as for rootstocks improvement programs.
Resumo:
Somatic embryogenesis is an efficient method for the production of target cells for soybean genetic transformation. However, this method still offers low percentages of plant regeneration, and perhaps is related to the maturation process and high morphological abnormalities of the matured embryos. This study aimed to identify a maturation medium that could contribute to the outcome of more efficient plant regeneration results. Embryogenic clusters, derived from cotyledons of immature seeds of the soybean cultivars Bragg and IAS5, were used as starting material for embryos development. Different maturation media were tested by using 6% maltose, 3% sucrose or 6% sucrose, combined with or without 25 g L-1 of the osmotic regulator polyethylene glycol (PEG-8000). The histodifferentiated embryos were quantified and classified in morphological types. Percentages of converted embryos were analyzed. Cultivar Bragg resulted in higher matured embryo quantities, but lower percentages were obtained for the conversion in comparison to cultivar IAS5. While the addition of PEG did not affect the number of embryos converted into plants, 6% sucrose enhanced the conversion percent significantly.
Resumo:
A plant regeneration method with cell suspension cultures of banana, and the effect of biobalistic on regeneration potential are described in this report. Somatic embryos of banana were obtained from indirect embryogenesis of male inflorescence of banana cultivar Maçã (AAB group). Part of the calluses formed (40%) showed embryogenic characteristics (nonfriable, compact and yellow color). The cell suspension, originated from embryogenic calluses, contained clusters of small tightly packed cells with dense cytoplasms, relatively large nuclei and very dense nucleoli. After four months of culture, somatic embryos started to regenerate. The maximum number of regenerated plants was observed between 45 and 60 days after embryo formation.In the first experiment, 401 plants were regenerated from approximately 10 mL of packed cells. In the second experiment, 399 plants were regenerated from a cell suspension six months older than that of the first experiment. Cell transformation using particle bombardment with three different plasmid constructions, containing the uid-A gene, resulted in a strong GUS expression five days after bombardment; however, plant regeneration from bombarded cells was much lower than nonbombarded ones.