880 resultados para SODIUM CHANNELS
Resumo:
RESUME: Etude de l'activation et de l'inactivation pH-dépendantes des canaux ASICs (Acid-Sensing Ion Channels) Benoîte BARGETON, Département de Pharmacologie et de Toxicologie, Université de Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Suisse Les canaux sodiques ASICs (Acid-Sensing Ion Channels) participent à la signalisation neuronale dans les systèmes nerveux périphérique et central. Ces canaux non voltage dépendants sont impliqués dans l'apprentissage, l'expression de la peur, la neurodégénération consécutive à une attaque cérébrale et la douleur. Les bases moléculaires sous-tendant leur activité ne sont pas encore totalement comprises. Ces canaux sont activés par une acidification du milieu extracellulaire et régulés, entre autres, par des ions tels que le Ca2+, le Zn2+ et le CI". La cristallisation de ASIC inactivé a été publiée. Le canal est un trimére de sous-unités identiques ou homologues. Chaque sous-unité a été décrite en analogie à un avant bras, un poignet et une main constituée d'un pouce, d'un doigt, d'une articulation, une boule β et une paume. Nous avons appliqué une approche bioinformatique systématique pour identifier les pH senseurs putatifs de ASICIa. Le rôle des pH senseurs putatifs a été testé par mutagénèse dirigée et des modifications chimiques combinées à une analyse fonctionnelle afin de comprendre comment les variations de ρ H ouvrent ces canaux. Les pH senseurs sont des acides aspartiques et glutamiques éparpillés sur la boucle extracellulaire suggérant que les changements de pH contrôlent l'activation et l'inactivation de ASIC en (dé)protonant ces résidus en divers endroits de la protéine. Par exemple lors de l'activation, la protonation des résidus à l'interface entre le pouce, la boule β et le doigt d'une même sous-unité induit un mouvement du pouce vers la bouie β et le doigt. De même lors de l'inactivation du canal les paumes des trois sous-unités formant une cavité se rapprochent. D'après notre approche bioinformatique, aucune histidine n'est impliquée dans la détection des variations de pH extracellulaire c'est-à-dire qu'aucune histidine ne serait un pH-senseur. Deux histidines de ASIC2a lient le Zn2+ et modifient l'affinité apparente du canal pour les protons. Une seule des deux est conservée parmi tous les ASICs, hASICIa H163. Elle forme un réseau de liaison hydrogène avec ses voisins conservés. L'étude détaillée de ce domaine, Pinterzone, montre son importance dans l'expression fonctionnelle des canaux. La perturbation de ce réseau par l'introduction d'un résidu hydrophobe (cystéine) par mutagénèse dirigée diminue l'expression du canal à la membrane plasmique. La modification des cystéines introduites par des réactifs spécifiques aux groupements sulfhydryle inhibe les canaux mutés en diminuant leur probabilité d'ouverture. Ces travaux décrivent les effets de l'acidification du milieu extracellulaire sur les canaux ASICs. ABSTRACT: Study of pH-dependent activation and inactivation of ASIC channels Benoîte BARGETON, Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1G05 Lausanne, Switzerland The ASIC (Acid-Sensing Ion Channels) sodium channels are involved in neuronal signaling in the central and peripheral nervous system. These non-voltage-gated channels are involved in learning, the expression of fear, neurodegeneration after ischemia and pain sensation. The molecular bases underlying their activity are not yet fully understood. ASICs are activated by extracellular acidification and regulated, eg by ions such as Ca2+, the Zn2+ and CI". The crystallization of inactivated ASIC has been published. The channel is a trimer of identical or homologous subunits. Each subunit has been described in analogy to a forearm, wrist and hand consisting of a thumb, a finger, a knuckle, a β-ball and a palm. We applied a systematic computational approach to identify putative pH sensor(s) of ASICIa. The role of putative pH sensors has been tested by site-directed mutagenesis and chemical modification combined with functional analysis in order to understand how changes in pH open these channels. The pH sensors are aspartic and glutamic acids distributed throughout the extracellular loop, suggesting that changes in pH control activation and inactivation of ASIC by protonation / deprotonation of many residues in different parts of the protein. During activation the protonation of various residues at the interface between the finger, the thumb and the β-ball induces the movement of the thumb toward the finger and the β-ball. During inactivation of the channel the palms of the three subunits forming a cavity approach each other. No histidine has been shown to be involved in extracellular pH changes detection, i.e. no histidine is a pH- sensor. Two histidines of ASIC2 bind Zn2+ and alter the apparent affinity of channel for protons. Only one of the two His is conserved among all ASICs, hASICIa H163. This residue is part of a network of hydrogen bonding with its conserved neighbors. The detailed study of this area, the interzone, shows its importance in the functional expression of ASICs. Disturbance of this network by the introduction of hydrophobic residues decreases the cell surface channel expression. Chemical modification of the introduced cysteines by thiol reactive compounds inhibits the mutated channels by a reduction of their open probability. These studies describe the effects of extracellular acidification on ASICs. RESUME GRAND PUBLIC: Etude de l'activation et de l'inactivation pH-dépendantes des canaux ASICs (Acid-Sensing Ion Channels) Benoîte BARGETON, Département de Pharmacologie et de Toxicologie, Université de Lausanne, rue du Bugnon 27, CH-1005 Lausanne, Suisse La transmission synaptique est un processus chimique entre deux neurones impliquant des neurotransmetteurs et leurs récepteurs. Un dysfonctionnement de certains types de synapses est à l'origine de beaucoup de troubles nerveux, tels que certaine forme d'épilepsie et de l'attention. Les récepteurs des neurotransmetteurs sont de très bonnes cibles thérapeutiques dans de nombreuses neuropathologies. Les canaux ASICs sont impliqués dans la neurodégénération consécutive à une attaque cérébrale et les bloquer pourraient permettre aux patients d'avoir moins de séquelles. Les canaux ASICs sont des détecteurs de l'acidité qui apparaît lors de situations pathologiques comme l'ischémie et l'inflammation. Ces canaux sont également impliqués dans des douleurs. Cibler spécifiquement ces canaux permettrait d'avoir de nouveaux outils thérapeutiques car à l'heure actuelle l'inhibiteur de choix, l'amiloride, bloque beaucoup d'autres canaux empêchant son utilisation pour bloquer les ASICs. C'est pourquoi il faut connaître et comprendre les bases moléculaires du fonctionnement de ces récepteurs. Les ASICs formés de trois sous-unités détectent les variations de l'acidité puis s'ouvrent transitoirement pour laisser entrer des ions chargés positivement dans la cellule ce qui active la signalisation neuronale. Afin de comprendre les bases moléculaires de l'activité des ASICs nous avons déterminé les sites de liaison des protons (pH-senseurs), ligands naturels des ASICs et décrit une zone importante pour l'expression fonctionnelle de ces canaux. Grâce à une validation systématique de résultats obtenus en collaboration avec l'Institut Suisse de Bioinformatique, nous avons décrit les pH-senseurs de ASICIa. Ces résultats, combinés à ceux d'autres groupes de recherche, nous ont permis de mieux comprendre comment les ASICs sont ouverts par une acidification du milieu extracellulaire. Une seconde étude souligne le rôle structural crucial d'une région conservée parmi tous les canaux ASICs : y toucher c'est diminuer l'activité de la protéine. Ce domaine permet l'harmonisation des changements dus à l'acidification du milieu extracellulaire au sein d'une même sous-unité c'est-à-dire qu'elle participe à l'induction de l'inactivation due à l'activation du canal Cette étude décrit donc quelle région de la protéine atteindre pour la bloquer efficacement en faisant une cible thérapeutique de choix.
Resumo:
Liddle syndrome is an autosomal dominant form of hypertension resulting from deletion or missense mutations of a PPPxY motif in the cytoplasmic COOH terminus of either the beta or gamma subunit of the epithelial Na channel (ENaC). These mutations lead to increased channel activity. In this study we show that wild-type ENaC is downregulated by intracellular Na+, and that Liddle mutants decrease the channel sensitivity to inhibition by intracellular Na+. This event results at high intracellular Na+ activity in 1.2-2.4-fold higher cell surface expression, and 2.8-3.5-fold higher average current per channel in Liddle mutants compared with the wild type. In addition, we show that a rapid increase in the intracellular Na+ activity induced downregulation of the activity of wild-type ENaC, but not Liddle mutants, on a time scale of minutes, which was directly correlated to the magnitude of the Na+ influx into the oocytes. Feedback inhibition of ENaC by intracellular Na+ likely represents an important cellular mechanism for controlling Na+ reabsorption in the distal nephron that has important implications for the pathogenesis of hypertension.
Resumo:
Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.
Resumo:
The epithelial sodium channel (ENaC) is responsible for Na+ and fluid absorption across colon, kidney, and airway epithelia. We have previously identified SPLUNC1 as an autocrine inhibitor of ENaC. We have now located the ENaC inhibitory domain of SPLUNC1 to SPLUNC1's N terminus, and a peptide corresponding to this domain, G22-A39, inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold). However, G22-A39 had no effect on the structurally related acid-sensing ion channels, indicating specificity for ENaC. G22-A39 preferentially bound to the β-ENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Addition of G22-A39 to CF human bronchial epithelial cultures (HBECs) resulted in an increase in airway surface liquid height from 4.2±0.6 to 7.9±0.6 μm, comparable to heights seen in normal HBECs, even in the presence of neutrophil elastase. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, which suggests that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the G22-A39 peptide suggests that this peptide may be suitable for treating CF lung disease.
Resumo:
The amiloride-sensitive epithelial sodium channel is the limiting step in salt absorption. In mice, this channel is composed of three subunits (alpha, beta, and gamma), which are encoded by different genes (Scnn1a, Scnn1b, and Scnn1c, respectively). The functions of these genes were recently investigated in transgenic (knockout) experiments, and the absence of any subunit led to perinatal lethality. More defined phenotypes have been obtained by introducing specific mutations or using transgenic rescue experiments. In this report, these approaches are summarized and a current gene-targeting strategy to obtain conditional inactivation of the channel is illustrated. This latter approach will be indispensable for the investigation of channel function in a wide variety of organ systems.
Resumo:
BACKGROUND:: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. METHODS:: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. RESULTS:: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6-1.9) (median [95% CI]) to 2.3 g (2.2-2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4-15.5) to 30.0 s (21.8-31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. CONCLUSIONS:: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.
Resumo:
We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.
Resumo:
OBJECTIVE: Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers. PATIENTS: A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A, SCNN1B, SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel. RESULTS: CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the alphaENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes. CONCLUSION: Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.
Resumo:
The epithelial sodium channel (ENaC) in the apical membrane of polarized epithelial cells is the rate-limiting step for Na entry into the cell; in series with the basolateral Na pump, it allows the vectorial transepithelial transport of Na ions. ENaC is expressed in different epithelia like the distal nephron or colon, and the airways epithelium. In the lung ENaC controls the composition and the amount of pulmonary fluid, whereas in the distal nephron ENaC under the control of aldosterone and vasopressin, is essential to adapt the amount of Na+ reabsorbed with the daily sodium intake. Activating mutations of ENaC cause severe disturbances of Na+ homeostasis leading to hypertension in human and in mouse models. Functional expression of ENaC in different cell systems allowed the identification of structural domains of the protein that are essential for channel function and/or modulation of channel activity. Site-directed mutations in specific domains of the channel protein lead to channel hyperactivity or channel loss of function. Knowledge about ENaC structure-function relationships opens new opportunities for development of pharmacological tools for controlling ENaC activity, such as channel activators of potential benefit in the treatment of pulmonary edema, or highly potent ENaC blockers with natriuretic effects.
Resumo:
The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.
Resumo:
BACKGROUND: The epithelial sodium channel (ENaC) is composed of three homologous subunits: alpha, beta, and gamma. Mutations in the Scnn1b and Scnn1g genes, which encode the beta and the gamma subunits of ENaC, cause a severe form of hypertension (Liddle syndrome). The contribution of genetic variants within the Scnn1a gene, which codes for the alpha subunit, has not been investigated. METHODS: We screened for mutations in the COOH termini of the alpha and beta subunits of ENaC. Blood from 184 individuals from 31 families participating in a study on the genetics of hypertension were analyzed. Exons 13 of Scnn1a and Scnn1b, which encode the second transmembrane segment and the COOH termini of alpha- and beta-ENaC, respectively, were amplified from pooled DNA samples of members of each family by PCR. Constant denaturant capillary electrophoresis (CDCE) was used to detect mutations in PCR products of the pooled DNA samples. RESULTS: The detection limit of CDCE for ENaC variants was 1%, indicating that all members of any family or up to 100 individuals can be analyzed in one CDCE run. CDCE profiles of the COOH terminus of alpha-ENaC in pooled family members showed that the 31 families belonged to four groups and identified families with genetic variants. Using this approach, we analyzed 31 rather than 184 samples. Individual CDCE analysis of members from families with different pooled CDCE profiles revealed five genotypes containing 1853G-->T and 1987A-->G polymorphisms. The presence of the mutations was confirmed by DNA sequencing. For the COOH terminus of beta-ENaC, only one family showed a different CDCE profile. Two members of this family (n = 5) were heterozygous at 1781C-->T (T594M). CONCLUSION: CDCE rapidly detects point mutations in these candidate disease genes.
Resumo:
Voltage-gated sodium channels (Navs) are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V ½ of steady-state activation and inactivation and increased Nav1.7-mediated I Na density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at ~250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa) was observed. This higher band shifted to an intermediate band (~260 kDa) when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression.
Resumo:
Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases.
Resumo:
Introduction. Coitus in snakes may last up to 28 hours; however, the mechanisms involved are unknown. Aim. To evaluate the relevance of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) system in snake corpus cavernosum reactivity. Methods. Hemipenes were removed from anesthetized South American rattlesnakes (Crotalus durissus terrificus) and studied by light and scanning electronic microscopy. Isolated Crotalus corpora cavernosa (CCC) were dissected from the non-spiny region of the hemipenises, and tissue reactivity was assessed in organ baths. Main Outcome Measures. Cumulative concentration-response curves were constructed for acetylcholine (ACh), sodium nitroprusside (SNP), 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272), and tadalafil in CCC precontracted with phenylephrine. Relaxation induced by electrical field stimulation (EFS) was also done in the absence and presence of N omega nitro-L-arginine methyl ester (L-NAME; 100 mu M), 1H-[1, 2, 4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 mu M) and tetrodotoxin (TTX; 1 mu M). Results. The hemipenes consisted of two functionally concentric corpora cavernosa, one of them containing radiating bundles of smooth muscle fibers (confirmed by alpha-actin immunostaining). Endothelial and neural nitric oxide synthases were present in the endothelium and neural structures, respectively; whereas soluble guanylate cyclase and PDE5 were expressed in trabecular smooth muscle. ACh and SNP relaxed isolated CCC, with the relaxations being markedly reduced by L-NAME and ODQ, respectively. BAY 41-2272 and tadalafil caused sustained relaxations with potency (pEC(50)) values of 5.84 +/- 0.17 and 5.10 +/- 0.08 (N = 3-4), respectively. In precontracted CCC, EFS caused frequency-dependent relaxations that lasted three times longer than those in mammalian CC. Although these relaxations were almost abolished by either L-NAME or ODQ, they were unaffected by TTX. In contrast, EFS-induced relaxations in marmoset CC were abolished by TTX. Conclusions. Rattlesnake CC relaxation is mediated by the NO-cGMP-PDE5 pathway in a manner similar to mammals. The novel TTX-resistant Na channel identified here may be responsible for the slow response of smooth muscle following nerve stimulation and could explain the extraordinary duration of snake coitus. Capel RO, Monica FZ, Porto M, Barillas S, Muscara MN, Teixeira SA, Arruda AMM, Pissinatti, L, Pissinatti A, Schenka AA, Antunes E, Nahoum C, Cogo JC, de Oliveira MA, and De Nucci G. Role of a novel tetrodotoxin-resistant sodium channel in the nitrergic relaxation of corpus cavernosum from the South American rattlesnake Crotalus durissus terrificus. J Sex Med 2011;8:1616-1625.
Resumo:
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.